

Bayesian Statistics for Genetics

Lecture 7: Meta-analysis

June, 2024

Overview

The ability to combine information from multiple sources is a strength of Bayesian statistics;

- Use of prior information + study data
- Combining multiple studies' data, in a meta-analysis

Meta-analysis was briefly introduced in Session 7 (GLMs) - here we give a more general approach, and look at mixed models, which are also natural in Bayesian approaches.

Overview

- Test association of disease (Y) with genotype ($X=0 / 1 / 2$) - is there a signal? (If so, learn new biology)
- Tiny effects, so combine multiple studies - meta-analysis

Overview

- Test association of disease (Y) with genotype ($X=0 / 1 / 2$) - is there a signal? (If so, learn new biology)
- Tiny effects, so combine multiple studies - meta-analysis

Meta-analysis: default approaches

In medium-sized studies or larger, can approximate the data from study i well, as

$$
\widehat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right)
$$

where each study is big enough that uncertainty about σ_{i} is negligible.
How about across studies? One very simple model assumes homogeneity, i.e.

$$
\beta_{i}=\beta_{0}
$$

and, with a flat prior on common parameter β_{0}, Session 4's results tell us that

$$
\begin{aligned}
\widehat{\beta}_{F}=\mathbb{E}\left[\beta_{0} \mid \text { data }\right] & =\sum_{i=1}^{k} \frac{\frac{1}{\sigma_{i}^{2}}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} \widehat{\beta}_{i} \\
\operatorname{Var}\left[\widehat{\beta}_{F}\right]=\operatorname{Var}\left[\beta_{0} \mid \text { data }\right] & =\frac{1}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}}
\end{aligned}
$$

Meta-analysis: default approaches

This is known as the fixed-effect or common-effect approach, and $\widehat{\beta}_{F}$ is the inverse-variance weighted or precision-weighted estimate

- Under true homogeneity, just as efficient as pooling all the data and adjusting for study (Lin \& Zeng, 2010)
- Under true homogeneity, Uniformly Most Powerful Unbiased (i.e. best) estimate of β_{0}

But

- True homogeneity is not generally plausible - perhaps in lab replicates, perhaps if all $\beta_{i}=0$
- Not learning about heterogeneity - which may be important in practice

Meta-analysis: under heterogeneity

To help think about $\beta_{i} \neq \beta_{0}$, consider data from three studies;

Each $n_{i}=200$ here. We assume all σ_{i}^{2} known ...can relax this.

Meta-analysis: under heterogeneity

Parameters those 3 studies are estimating;

Differences in means $\left(\beta_{i}\right)$ and information per observation $\left(\phi_{i}\right)$

Meta-analysis: under heterogeneity

One overall population we might learn about;

Mean difference, with each sub-population represented equally.

Meta-analysis: under heterogeneity

Another overall population we might learn about;

Weights here are $2 / 7 / 1$, not $1 / 1 / 1$ as before.

Meta-analysis: under heterogeneity

Another overall population we might learn about;

Still an average effect, but closer to β_{2} than before.

Meta-analysis: under heterogeneity

And another; (obviously, there are unlimited possibilities)

Weights here are $7 / 1 / 2$.

Meta-analysis: under heterogeneity

And another; (obviously, there are unlimited possibilities)

Weights here are $7 / 1 / 2$ - smaller average effect, closer to β_{1}

Meta-analysis: under heterogeneity

With a flat prior, among all the weighted averages which has smallest posterior variance? The answer may look familiar;

$$
\beta_{F}=\sum_{i=1}^{k} \frac{\frac{1}{\sigma_{i}^{2}}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} \beta_{i}
$$

Its posterior mean and variance are the same as we saw for common effect β_{0}

- Known as the fixed-effectS approach (note the plural) - it assumes one fixed effect for each study, we estimate an average
- ... the average the data tells us most about

A single estimator can have more than one valid justification. If this applies to your estimator, state why you are using it.

Meta-analysis: under heterogeneity

Those justifications
once again;

Name:	Common effect	Fixed effects
Assumptions:		
	Effect size	$\begin{aligned} & \text { Effect size } \\ & \beta_{i} \text { unrestricted } \\ & \text { Often } \end{aligned}$
	$\text { All } \beta_{i}=\beta_{0}$ Seldom	
$\widehat{\beta}_{F}$ estimates:	Single β_{0}	An average, β_{F}
Valid estimate?	Yes	Yes
$\operatorname{Var}\left[\widehat{\beta}_{F}\right]$ valid?	\approx Yes*	\approx Yes*

- When testing, only care if all $\beta_{i}=0$, when common-effect=fixed-effects
- This area is surprisingly controversial...
* Having negligible error in σ_{i} matters, but small-sample "fixes" are available

Meta-analysis: under heterogeneity

Q. Can I use $\widehat{\beta}_{F}$ under heterogeneity?
A. It depends who you ask (!)
... it is no longer an estimate of any parameter, nor can its standard error or associated confidence interval be found

Whitehead \& Whitehead, SiM
The assumption should thus be viewed as
a potentially useful approximation
Greenland \& Rothman, Modern Epi, pg 270
... it does not, however, implicitly assume that the true effect of treatment is the same in each trial

$$
\text { Peto et al, e.g. Lancet, } 1998
$$

Default advice makes users reluctant to report $\widehat{\beta}_{F}$ alone under heterogeneity.

Meta-analysis: under heterogeneity

Letting an average (e.g. β_{F}) tell the whole story is the 'flaw of averages';

- Average effect β_{F} answers one question
- This does not mean other questions aren't interesting!

Meta-analysis: under heterogeneity

An obvious measure of 'dispersion', i.e. spread;

$$
\frac{1}{k} \sum_{i=1}^{k}\left(\beta_{i}-\beta_{F}\right)^{2}
$$

But we actually learn more about a weighted average of deviations around β_{F};

$$
\zeta^{2}=\frac{1}{\sum_{i=1}^{k} \eta_{i} \phi_{i}} \sum_{i=1}^{k} \eta_{i} \phi_{i}\left(\beta_{i}-\beta_{F}\right)^{2} .
$$

An empirical estimate of this quantity can be written

$$
\widehat{\zeta}^{2}=\frac{\sum_{i=1}^{k} \sigma_{i}^{-2}\left(\beta_{i}-\widehat{\beta}_{F}\right)^{2}-(k-1)}{\sum_{i=1}^{k} \sigma_{i}^{-2}}=\frac{Q-(k-1)}{\sum_{i=1}^{k} \sigma_{i}^{-2}}
$$

where Q is a.k.a. Cochran's Q, and $I^{2}=1-(k-1) / Q$ (trunacted at zero) are standard non-Bayesian statistics for testing homogeneity.

Meta-analysis: exchangeability

As we've seen, no prior really describes lack of knowledge But for multiple parameters, we can (easily) state that knowledge about them is symmetric;

The property $p\left(\beta_{1}, \beta_{2}\right)=p\left(\beta_{2}, \beta_{1}\right)$ is called exchangeability.

Meta-analysis: exchangeability

Exchangeability is a weaker statement than $p\left(\beta_{1}, \beta_{2}\right)=p\left(\beta_{1}\right) p\left(\beta_{2}\right)$, a.k.a. independence (see previous slide) and a stronger statement than having identical distributions (see right).

Meta-analysis: partial exchangeability (*)

An example with binary $\left\{z_{1}, z_{2}, z_{3}\right\}$; (colors indicate probabilities) Are z_{1}, z_{2}, z_{3} identically distributed? Independent? Exchangeable?

z_{1}	z_{2}	z_{3}	$\mathbb{P}[\boldsymbol{z}]$
0	0	0	$6 / 20$
0	0	1	$2 / 20$
0	1	0	$3 / 20$
0	1	1	$1 / 20$
1	0	0	$2 / 20$
1	0	1	$2 / 20$
1	1	0	$1 / 20$
1	1	1	$3 / 20$

Meta-analysis: partial exchangeability (*)

Full exchangeability does not hold, but any two variables are exchangeable; (colors indicate probabilities again)

The variables $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ are 2-exchangeable; the concept can be generalized to n-exchangeability.

Meta-analysis: using exchangeability

In an exchangeable prior, there's no distinction between what we know about one β_{i} versus another. For example, a prior with exchangeable β_{i}, for meta-analysis;

$$
\begin{array}{ll}
\widehat{\beta}_{i} & \sim \\
\beta_{i} & \stackrel{i . i . d .}{\sim} \\
\sim & N\left(\mu, \beta_{i}, \sigma_{i}^{2}\right)
\end{array}
$$

...for some μ, τ^{2} - which may in turn have hyperpriors, describing uncertainty about the prior for the β_{i}.

This is a form of hierarchical model - more on these in later sessions.
Remarkably, it turns out that Bayesian hierarchical models and exchangeability are equivalent - this is de Finetti's theorem. If your beliefs on the β_{i} have exchangeability, they must correspond to
β_{i} being random draws from some mixing distribution.

Meta-analysis: using exchangeability

In this hierarchical model, the default not-so-Bayesian estimate for μ is Der Simonian-Laird (DSL);

$$
\begin{aligned}
\widehat{\mu}= & \frac{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}+\hat{\tau}^{2}} \widehat{\beta}_{i}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}+\hat{\tau}^{2}}}, \quad \text { with } \operatorname{Var}\left[\widehat{\beta}_{F}\right]=\frac{1}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}+\hat{\tau}^{2}}}, \\
& \text { and } \widehat{\tau}^{2}=\max \left(\frac{Q-(k-1)}{\sum \sigma_{i}^{-2}-\sum \sigma_{i}^{-4} / \sum \sigma_{i}^{-2}}, 0\right)
\end{aligned}
$$

- DSL uses a method of moments plug-in for τ^{2}, then fairly natural
- Gives $\widehat{\beta}_{F}$ when Q (heterogeneity) is below-average compared to homogeneity
- Estimates a weighted average of the β_{i} - but where inverse-variance weights are 'moderated' by τ^{2}

Meta-analysis: example

Typical meta-analysis of 5 association studies;

Using full Bayes, we can introduce priors on the hyperparameters;

$$
\begin{array}{rl}
\widehat{\beta}_{i} & \sim \\
\beta_{i} & N\left(\beta_{i}, \sigma_{i}^{2}\right) \\
\mu & \sim N\left(\mu, \tau^{2}\right) \\
\tau^{2} & \sim \\
\sim & N\left(0, \psi^{2}\right) \\
\sim & p\left(\tau^{2}\right)
\end{array}
$$

Meta-analysis: example

- $\operatorname{Tr} y \psi^{2}$ at $0.1,1,1000$
- Try τ^{2} fixed at $1 / 4,1,25,100$ and a selection from Lambert (2005);
$L_{1}: \tau^{-2} \sim \Gamma(0.001,0.001) ; L_{3}: \log \left(\tau^{2}\right) \sim \mathrm{U}(-10,10) ; L_{5}: \tau^{-2} \sim \mathrm{U}(1 / 1000,1000) ; L_{7}: \tau^{-2} \sim \operatorname{Par}(1,0.001)$; $L_{9}: \tau \sim \mathrm{U}(0,100) ; L_{11}: \tau \sim N(0,100), \tau>0$
- Priors matter for μ, not β_{F}

Meta-analysis: example

For the priors with fixed ψ, τ^{2};

Meta-analysis: example

Similarly, precision-weighted 'spread' ζ^{2} is more stable than τ^{2}

- Not as stable as for β_{F} - as data tell us less about ζ^{2} than overall location - Just reporting the original-data forest plot is a sane summary

Meta-analysis: example

And for priors with fixed ψ^{2}, τ^{2} - the same story;

More on sensitivity

Why, in these models, does the prior on τ^{2} matter so much?

Recall our example; what values of τ are plausible?

		$4.40[-0.45,9.25]$

More on sensitivity

Homogeneity (i.e. $\tau=$ 0) isn't ruled out by data - but low τ values are, under Γ priors. This can't be entirely avoided, expect to think carefully about the prior.

Hierarchical models: another motivation

Exchangeability is a strong justification for using hierarchical models (see e.g. Higgins \& Spiegelhalter 2009). But the 'classical' motivation looks like this;

Randomly-sampled effect-sizes have mean μ, variance τ^{2} - parameters of the random effects distribution.

Hierarchical models: another motivation

The same calculations can have >1 interpretation; Model term Random effects

Fixed effectS + exchangeability

$\widehat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right)$	Random outcomes	Random outcomes	
$\beta_{i} \sim N\left(\mu, \tau^{2}\right)$	Random studies	Prior on	
μ	$\sim N\left(0, \psi^{2}\right)$	Prior on fixed mean	fixed
$\tau^{2} \sim p\left(\tau^{2}\right)$	\& var of possible β_{i}	$\beta_{1}, \ldots, \beta_{k}$	

- In RE model, ψ is the standard deviation of the prior on average study effect $\mu ; \tau$ is the standard deviation of the study effects
- An assumption of i.i.d. effects is often hard to justify; typically, later studies' designs depend on earlier studies' results - e.g. replication studies
- But random effects models are needed for prediction - what β_{i} might we see in the next study?

Hierarchical models: another motivation

Q. So will this upset people?
A. Again (!) it depends who you ask

Random-effects models are unpopular with some...

I'll not let the random differences between different trials contribute to my final p-value or contribute to my final estimate of the magnitude of the effect or to the confidence intervals that I'll put about it.

The random effects analysis says, look, we've got a lot of different trial results, here. What's the mean and what's the scatter of the different trials results? I don't think that this is actually wholly wrong [...] I think it does answer a question. But it's a very abstruse and uninteresting question

Richard Peto, Statistics in Medicine, 1987

Hierarchical models: another motivation

It's worth noting that random-effects models do not provide intervals that 'reflect heterogeneity';

Recall that μ and its posterior describe the mean of the population of study effects you might ever see, not necessarily the set of effects in the observed studies.

Summary - for inference

Name	Common effect	Fixed effectS	Random effects
	Effect size	Effect size	Effect size
Estimate:	β_{0}	β_{F}	μ
Spread:	nope!	ζ^{2}	τ^{2}
Problems?	Unrealistic	Just right!	Sensitive

MANTRA

Assumptions of exchangeability provide attractive shrinkage and 'borrowing strength', when there's no reason to distinguish β_{i}. But, at least in genetic association work, ancestry may suggest which β_{i} may be similar;

Right: dendrogram illustrating mean MAF similarities/differences between African American, European American, Latinos, Japanese Americans \& Native Hawaiians; data from the Type 2 Diabetes (T2D) consortium.

MANTRA

The Meta-ANalysis of Transethnic Association studies (MANTRA) method (Morris, 2011) exploits the MAF information (or $F_{S T}$) to cluster effects in subpopulations. Conceptually;

MANTRA

Within each cluster, there is a single 'center' effect selected from the study effects $\beta_{1}, \beta_{2}, \ldots \beta_{k}$ - each study is equally likely to be such a center, a priori, and each non-center study gets assigned to its 'nearest' center.

Within-cluster, the center effect size has prior

$$
\begin{aligned}
\beta_{c} & \sim N\left(\mu, \tau^{2}\right) \\
\tau^{2} & \sim \operatorname{Exp}(1) \\
\mu & \sim \text { flat. }
\end{aligned}
$$

The number of clusters C has prior

$$
\mathbb{P}[C=c]=\left\{\begin{array}{cl}
\frac{1}{2}, & c=1 \\
\frac{1}{2^{c}} \frac{2^{k-1}}{2^{k-1}-1}, & c=2, \ldots, k
\end{array}\right.
$$

i.e. homogeneity has 50% prior support, then it 'tails off'.

MANTRA

MANTRA is implemented with reversible jump MCMC - somewhat like Gibbs Sampling, but allowing center effects β_{c} to enter/leave the model. It is run twice, with all $\beta_{i}=0$ (i.e. the null) and the model above (alternative).

Its output;

- Bayes Factor comparing the null with the clustered, non-zero β_{i}
- Posterior probability of $C>1$ under the alternative
- Posterior probabilities of cluster-membership, for each study, under the alternative

The computational effort required is non-trivial (e.g. 10 mins per SNP) but can be parallelized; 32 processors for 1 week enables GWAS with 2.5 M SNPs.

MANTRA

Output for T2D association, at rs7754840 in the (known) CDKAL1 locus;

Compared to the null, get $B F=8.9$ for $C=1$, but $B F=11.0$ for unconstrained model - and 99.2% posterior probability that $C>1$.

MANTRA

Showing the posterior probability of cluster memberships;

The big Bayes Factor occurs as the data suggest differences between group as well as a non-zero average effect. Both violate the null - that all $\beta_{i}=0$.

MANTRA

Heterogeneity and average effect in the fixed-effects analysis; writing

$$
\begin{aligned}
Z_{i}^{2} & =\widehat{\beta}_{i}^{2} / \sigma_{i}^{2} \\
Z_{F}^{2} & =\widehat{\beta}_{F} / \operatorname{Var}\left[\widehat{\beta}_{F}\right] \\
\text { then } Z^{2} & =\sum_{i=1}^{k} Z_{i}^{2} \\
& =Z_{F}^{2}+\sum_{i=1} \sigma_{i}^{-2}\left(\widehat{\beta}_{i}-\widehat{\beta}_{F}\right)^{2} \\
& =Z_{F}^{2}+Q
\end{aligned}
$$

i.e. the signal-to-noise over all studies is the signal-to-noise for the average effect β_{F} plus the heterogeneity - Cochran's Q.

GWAS usually only examines β_{F} - but there's no need to restrict like this. See also the ASSET method, looking at differences by disease subtype.

Summary

- Meta-analysis is natural in a Bayesian framework
- Summarizing what You know is still a challenge
- Questions of heterogeneity are of interest, but often more sensitive to modeling assumptions; prior information matters

Obligatory XKCD cartoon

And finally;
TVANY MEIA-ANALYSIS SIUDIES INCLUDE THE PHRASE "WE SEARCHED MEDLINE, EMBASE, AND COCHRANE FOR STUDIES..."
THIS HAS LED TO META-META-ANALYSES COMPARING META-ANALYSIS METHODS.
es M SAMPSON (2003), PL ROYLE (2005)
ELEE (2011), AR LEMESHOU (2005)
WE PERFORTMED A META-META-META-ANALYSIS OF THESE META-META-ANALYSES.

METHODS: WE SEARCHED MEDLINE, EMBASE, AND COCHRANE FORTHE PHRASE "WESEARCHED MEDUNE, EMBASE, AND COCHRANE FOR THE
PHRASE "IIF GEARTHED MEDUNE EMBASE AND LIFE GOAL \#28: GET A PAPER REJECTED WITH THE COMMENT "TOO META"

The meta-meta analyses are real!

