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Transcription regulation
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Modeling sequence motifs
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Modeling Motifs

DNA sequence data R = (R1,R2, ...,RJ)
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Motif alignment model

• Alignment variable A = {a1, a2, ..., aJ}
• Every background position (non-motif part) follows a common multinomial

distribution with parameter Θ0 = {θ0A, θ0C, θ0G, θ0T}
• Every base i inside the motif follows a specific multinomial distribution with

parameter θi = {θiA, θiC, θiG, θiT}
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Likelihood

The likelihood of observing R given all the parameters can be written as

P (R|θ0,Θ, A) =
∏
j

4∏
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θ
hk(Rj)
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w∏
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k=1

(
θik
θ0k

)hk(aj−1+i)

This is a mixture model∗, i.e., Sequence data generated from two distinct

distributions.

What are they?

* see Lawrence et al Science 1993, also Liu et al JASA 1995
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https://doi.org/10.1126/science.8211139
https://www.jstor.org/stable/pdf/2291508.pdf


Statistical model & algorithm to fit it

We aim to learn the joint posterior of multinomial parameters Θ and alignment
A, i.e. P[ Θ,A|R, θ0 ]. Using Gibbs sampling, we can do this via

• P[A|Θ, R, θ0 ]
• P[ Θ|A, R, θ0 ], a.k.a. the full conditionals

As an algorithm:

1. Initialize Θ,A by choosing random starting positions

2. Iterate the following steps many times;

• Randomly or systematically choose a sequence to exclude
• Carry out the predictive-updating step to update the starting position
• Stop when there are no more observable changes in likelihood
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Clustering

The goal is to group objects

according to their similarity,

a.k.a. unsupervised learning;

Ungrouped Grouped
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Clustering

This approach is very popular

in genetics and genomics:

• Population structure

• Disease subtypes

• Co-regulated genes

• Separate cell types

• Cladistics: classify species
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Why cluster?

By clustering genes we can:

• Identify groups of possibly co-regulated genes (e.g. in conjunction with

sequence data)

• Identify typical temporal or spatial gene expression patterns (e.g. cell cycle

data)

• Arrange a set of genes in an order that is not totally meaningless

By clustering samples we can

• Do quality control: detect experimental artifacts/bad hybridizations, label

switches, etc

• Check whether samples are grouped according to known categories

• Identify new classes of biological samples (e.g. tumor subtypes)
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Existing clustering methods

Clustering methods generally rely on two components:

• Distance measure: Quantification of (dis-)similarity of objects:

– Euclidean distance
– Manhattan distance
– Correlation distance

• Cluster algorithm: A procedure to group objects, aiming for small within-
cluster distances, large between-cluster distances:

– Hierarchical clustering
– K-means
– Self Organizing Map
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Existing clustering methods

Hierarchical clustering Self Organizing Map (SOM)
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Model-based clustering

An alternative is to specify a finite

mixture model∗, where group mem-

bership is an unknown parameter. The

model for data X states

P[X|Θ,Λ ] =
n∑
i=1

K∑
k=1

λkp(xi|θk),

where number of clusters K is deter-

mined using the Bayesian Information

Criterion (BIC), and clustering is then

performed using the EM algorithm.

* see Banfield & Raftery, Biometrics 1993, Yeung et al Bioinformatics 2001
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https://www.jstor.org/stable/2532201
https://doi.org/10.1093/bioinformatics/17.10.977


Dirichlet process mixture model

To limit the impact of choosing K based on the data, we can implement an
infinite mixture model – essentially averaging over many potential K.

The best-known

approach for

this uses a

Chinese restaurant

process:∗

* Developed by Jim Dubins & Lester Pitman, details in Aldous (1985). Pitman (1996)
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https://mathscinet.ams.org/mathscinet/relay-station?mr=0883646
https://www.stat.berkeley.edu/users/pitman/blmq.pdf
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About Dirichlet Process

• Let (Θ,B) be a measurable space, G0 be a probability measure on the space,

and [FIXME symbol] be a positive real number

• A Dirichlet process is any distribution of a random probability measure G over

(Θ,B) such that, for all finite partitions (A1, ..., Ar) of Θ,

(G(A1), ..., G(Ar)) ∼ Dirichlet(αG0(A1), ..., αG0(Ar))

• Draws G from DP are generally not distinct

• The number of distinct values grows with O(logn)
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General scheme

G ∼ DP (α,G0)
θi ∼ G, i = 1, ..., n
yi ∼ p(θi), i = 1, ..., n

• Sample θ1 ∼ G0,
• Sample θ2 ∼ 1

1+αIθ1
+ α

1+αG0,
...
• Sample θn ∼ n1

N−1+αIθ1
+ n2

n+1+αIθ2
+ · · · nK

N−1+αIθK + α
1+αG0,
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Related topics

• Polya urn process

• Stick breaking

• Infinite mixture model

• Bayesian nonparametric model

• Pioneers: Thomas Ferguson, David Blackwell, ...
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https://www.math.ucla.edu/~tom/
https://magazine.amstat.org/blog/2016/03/31/sih-blackwell/


Real example: clustering DNA motifs

• Supposed we have collected n motifs of equal width.

• We want to explore how many motif patterns we can find from them.

• Model: product multinomial distributions

– motifs within a cluster follow the same distribution

– each cluster is represented by a distinct distribution

• No need to specify a cluster number

• Inference can be conducted using MCMC

* References for bioinformatics applications: clustering motifs (2003); clustering gene expression

data (2006)
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https://www.nature.com/articles/nbt802
https://academic.oup.com/bioinformatics/article/22/16/1988/207951


Prior and Posterior

• X = {xij} denotes the DNA motif data (motif i, position j),

• E = {E(i)} is indicator of cluster membership for motif i. This is parameter

of interest.

• Prior for E:

P (E(i) = j|E(1), ..., E(i− 1), E(i+ 1), ..., E(n)) =

{ nk
i−1+α, j = k

α
i−1+α, j = 0

• Posterior for E:

P (E(i) = j|E(1), ..., E(i− 1), E(i+ 1), ..., E(n)) ∝
{
nkP (X|E(i) = j), j = k
αP (X|E(i) = 0), j = 0
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Algorithm

• Initialization: randomly assign genes into an arbitrary number of K0 clusters

1 ≤ K0 ≤ N .

• For each gene i, perform the following reassignment:

– Remove gene i from its current cluster, given the current assignment of

all the other genes, calculate the probability of this gene joining each of

the existing cluster as well as being alone.

– Assign gene i to the K + 1 possible clusters according to probabilities.

Update indicator variable E(i) based on the assignment.

– Repeat the above two steps for every gene, and repeat for a large number

of rounds until convergence.
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Summary

• Model-based clustering is based on probability distribution assumption

• Ideal for handling noisy data

• Computationally efficient: no need to calculate pairwise distances

• Providing statistical inference is straightforward

• Dirchlet Process-based clustering enables to determine the number of clusters

automatically
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