Bayesian Statistics for Genetics
Lecture 6: Modeling DNA sequence motifs
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Transcription regulation

6.1



Modeling sequence motifs
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Modeling Motifs

aaaggtcgag atcgatactagcaatcgttaccctagctcgatcgaaa

acgtgagatcagctatgaccga ataaccg

gaa atcgatactagcaatcgttaccctagctcgatcgagatggaaag

acgtgagatcagctatcgatcgattga tacgtat

DNA sequence data R=(R1,R»,...,Ry)
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Motif alignment model

qa. Motif

width = w
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e Alignment variable A ={aq,ap,...,a;}
e Every background position (non-motif part) follows a common multinomial
distribution with parameter ©qg = {0p4, 9%, %cq, %1}
e Every base i inside the motif follows a specific multinomial distribution with
parameter 6, = {0, 4,0,c,0;c,0;1}
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Likelihood

The likelihood of observing R given all the parameters can be written as

h R ’L a;— 7
P(RI6o. 0, 4) =T T 0 ] H( Zik yhg(a;= 1)
j k=1 i—1 k=1 U0k

This is a mixture model*, i.e., Sequence data generated from two distinct
distributions.

What are they?

* see Lawrence et al Science 1993, also Liu et al JASA 1995
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https://doi.org/10.1126/science.8211139
https://www.jstor.org/stable/pdf/2291508.pdf

Statistical model & algorithm to fit it

We aim to learn the joint posterior of multinomial parameters © and alignment
A, i.e. P[©,A|R,0p]. Using Gibbs sampling, we can do this via

e P[A|O,R, 0]
e P[O|A,R,0p], a.k.a. the full conditionals

As an algorithm:

1. Initialize ©, A by choosing random starting positions

2. Iterate the following steps many times;

e Randomly or systematically choose a sequence to exclude
e Carry out the predictive-updating step to update the starting position
e Stop when there are no more observable changes in likelihood
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Clustering

The goal is to group objects
according to their similarity,
a.k.a. unsupervised learning,
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Clustering

T his approach is very popular
in genetics and genomics:

e Population structure
Disease subtypes
Co-regulated genes
Separate cell types

o
[
[
e Cladistics: classify species
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Why cluster?

By clustering genes we can:

Identify groups of possibly co-regulated genes (e.g. in conjunction with
sequence data)

Identify typical temporal or spatial gene expression patterns (e.g. cell cycle
data)

Arrange a set of genes in an order that is not totally meaningless

By clustering samples we can

Do quality control: detect experimental artifacts/bad hybridizations, label
switches, etc

Check whether samples are grouped according to known categories
Identify new classes of biological samples (e.g. tumor subtypes)
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EXisting clustering methods

Clustering methods generally rely on two components:

e Distance measure: Quantification of (dis-)similarity of objects:

— Euclidean distance
— Manhattan distance
— Correlation distance

e Cluster algorithm: A procedure to group objects, aiming for small within-
cluster distances, large between-cluster distances:

— Hierarchical clustering
— K-means
— Self Organizing Map
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iIng methods
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Self Organizing Map (SOM)

Hierarchical clustering
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Model-based clustering

An alternative is to specify a finite
mixture model*, where group mem-
bership is an unknown parameter. The
model for data X states

K

n
PIX[©,A]= ) > Xip(zlbr),
i=1k=1

where number of clusters K is deter-
mined using the Bayesian Information
Criterion (BIC), and clustering is then
performed using the EM algorithm.

* see Banfield & Raftery, Biometrics 1993, Yeung et al Bioinformatics 2001
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https://www.jstor.org/stable/2532201
https://doi.org/10.1093/bioinformatics/17.10.977

Dirichlet process mixture model

To limit the impact of choosing K based on the data, we can implement an
infinite mixture model — essentially averaging over many potential K.

The best-known

approach for

this uses a *°**
Chinese restaurant
process.*

* Developed by Jim Dubins & Lester Pitman, details in Aldous (1985). Pitman (1996)
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https://mathscinet.ams.org/mathscinet/relay-station?mr=0883646
https://www.stat.berkeley.edu/users/pitman/blmq.pdf

Dirichlet process mixture model

To limit the impact of choosing K based on the data, we can implement an
infinite mixture model — essentially averaging over many potential K.

The best-known

approach for . The probability of joining these tables:
this uses a (o
: —k =k
Ch/nese.* restaurant PCEG) = | (). EG—1)) = z—1a+a |
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* Developed by Jim Dubins & Lester Pitman, details in Aldous (1985), Pitman 1996)
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https://mathscinet.ams.org/mathscinet/relay-station?mr=0883646
https://www.stat.berkeley.edu/users/pitman/blmq.pdf

About Dirichlet Process

e Let (©, B) be a measurable space, Gg be a probability measure on the space,
and [FIXME symbol] be a positive real number

e A Dirichlet process is any distribution of a random probability measure GG over
(©, B) such that, for all finite partitions (A4, ..., Ar) of ©,

(G(Aq1),...,G(Ay)) ~ Dirichlet(aGg(Aq), ...,aGg(Ar))

e Draws GG from DP are generally not distinct

e The number of distinct values grows with O(logn)
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General scheme

G ~ DP(a,Gp)
0, ~ G, r=1,...,n
Y, p(@i), — 1,...,n
e Sample 01 ~ Gy,
e Sample 0> ~ H%Oélgl + 1_|_aGo,

n
e Sample Op ~ 5= 1—|—a191 + ortrale, o viTa 1—|—aI o T 15aG0

EEnn
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Related topics

e Polya urn process

e Stick breaking

e Infinite mixture model

e Bayesian nonparametric model

e Pioneers: Thomas Ferguson, David Blackwell, ...
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https://www.math.ucla.edu/~tom/
https://magazine.amstat.org/blog/2016/03/31/sih-blackwell/

Real example: clustering DNA motifs

e Supposed we have collected n motifs of equal width.
e \We want to explore how many motif patterns we can find from them.

e Model: product multinomial distributions
— motifs within a cluster follow the same distribution
— each cluster is represented by a distinct distribution

e NO need to specify a cluster number

e Inference can be conducted using MCMC

* References for bioinformatics applications: clustering motifs (2003); clustering gene expression
data (2006)
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https://www.nature.com/articles/nbt802
https://academic.oup.com/bioinformatics/article/22/16/1988/207951

Prior and Posterior

o X = {z;;} denotes the DNA motif data (motif 4, position j),

e E={F(i)} is indicator of cluster membership for motif i. This is parameter
of interest.

e Prior for E:

P(E(i) =j|E(1),...,E(i—1),EG+1),..,E(n)) = { i=1ra ‘72
z—l—l—a’ J

e Posterior for E:

N | | nyP(X|EG) =7), j=k
P(EG) =j|EQ1),...E(Gi—1),EG + 1),..., E(n)) o { osz(X|E(7j) _ ()7), ; 0
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Algorithim

e Initialization: randomly assign genes into an arbitrary number of Ky clusters
1 < Kg<N.

e For each gene i, perform the following reassignment:

— Remove gene ¢ from its current cluster, given the current assignment of
all the other genes, calculate the probability of this gene joining each of
the existing cluster as well as being alone.

— Assign gene ¢ to the K + 1 possible clusters according to probabilities.
Update indicator variable E(i) based on the assignment.

— Repeat the above two steps for every gene, and repeat for a large number
of rounds until convergence.
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Summary

e Model-based clustering is based on probability distribution assumption

e Ideal for handling noisy data

e Computationally efficient: no need to calculate pairwise distances

e Providing statistical inference is straightforward

e Dirchlet Process-based clustering enables to determine the number of clusters
automatically
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