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Outline

• Conclude our beta/binomial discussion with its extension to multinomial data

– and conjugate priors

• Hardy-Weinberg equilibrium examples

• INLA, for posterior calculations in more general models
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Motivating Example: HWE

• We measure a diallelic marker on n unrelated individuals

• The data, and the model’s notation:
Genotype Total

A1A1 A1A2 A2A2
Count n1 n2 n3 n
Population Frequency q1 q2 q3 1

• There is a fixed unknown probability q1, q2, q3 for each of the genotypes – and

q1 + q2 + q3 = 1 so there are two free parameters

• Define the proportions of alleles A1 and A2 are p1 and p2 = 1− p1

• In terms of q1, q2, q3:

p1 = q1 +
q2

2

p2 =
q2

2
+ q3
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Motivating Example: HWE

• Formally, HWE is the statistical independence of an individual’s alleles at a

locus

• Under HWE, the genotype probabilities are
Genotype

A1A1 A1A2 A2A2
Proportion p2

1 2p1p2 p2
2 1

• Reasons for deviation from HWE include: genotyping error, but also small

population size, selection, inbreeding and population structure

4.3



Motivating Example: HWE

Lidicker et al (1997) examined genetic

variation in sea otters.

With n=64, they got n1=37,n2=20,n3=7.

Are these frequencies consistent with HWE?

• The MLEs are:

q̂1 =
37

64
= 0.58 q̂2 =

20

64
= 0.31 q̂3 =

7

64
= 0.11

p̂1 =
37× 2 + 20

128
= 0.73 p̂2 =

20 + 7× 2

128
= 0.27

• An exact p-value for H0 : {q1 = p2
1, q2 = 2p1p2, q3 = p2

2} is 0.11.
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Motivating Example: HWE

• Testing for HWE is carried out via χ2 tests – that use asymptotic i.e. large-

sample approximations – or or exact tests, that don’t

• The accuracy of the χ2 test’s approximation depends on sample size (smallest

cell, broadly) and α, the level of Type I error rate control

• Computing the exact test can be a burden, particularly when there are many

alleles/samples

• The discreteness of the test statistic is a problem – e.g. the exact test has

to be conservative to control Type I error rates

• In general, choosing α is tricky; the null of exact HWE isn’t plausible, so how

often we’d reject it when it holds (i.e. T1ER) isn’t obviously relevant

• Doing estimation, the parameter space constraints are a further challenge,

particularly when expressing uncertainty. (This gets worse with more alleles)
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Parameters of Interest

Genotype Total
A1A1 A1A2 A2A2

Population Frequency q1 q2 q3 1

• Rather than q1, q2, q3, we may be interested in other parameters of interest.
• In the HWE context: Let X1 and X2 be indicators of the A1 allele for the

two possibilities at a locus; so X1 = X2 = 1 corresponds to genotype A1A1.
• The covariance between X1 and X2 is the disequilibrium coefficient:

D = q1 − p2
1

Under HWE q1 = p2
1, and the covariance is zero.

• Another quantity of interest (Shoemaker, Painter & Weir, 1998) is

ψ =
q2

2

q1q3
.

Under HWE, ψ = 4.
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Parameters of Interest

• The inbreeding coefficient is

f =
q1 − p2

1

p1p2
.

The variance of X1 and X2 is p1(1− p1) = p1p2 and so f is the correlation

• We may express q1, q2, q3 as

q1 = p2
1 + p1(1− p1)f

q2 = 2p1(1− p1)(1− f)

q3 = (1− p1)2 + p1(1− p1)f.

So positive values of f indicate an excess of homozygotes (and may indicate

inbreeding), while negative values indicate an excess of heterozygotes.
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Derivation of the Posterior and Prior Specification

Genotype Total
A1A1 A1A2 A2A2

Count n1 n2 n3 n
Population Frequency q1 q2 q3 1

• With three counts, the multinomial is known as a trinomial distribution.

• We have three parameters, q1, q2, q3, but they sum to 1, so that effectively

we have two parameters.

• We write q = (q1, q2, q3) to represent the vector of probabilities, and n =

(n1, n2, n3) for the data vector.

• Via Bayes Theorem:

p(q|n) =
Pr(n|q)× p(q)

Pr(n)
Posterior ∝ Likelihood × Prior
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Derivation of the Posterior and Prior Specification

• We assume n independent draws each with common probabilities q =

(q1, q2, q3) of being in each category. The distribution of n1, n2, n3 is called a

multinomial:

Pr(n1, n2, n3|q1, q2, q3) =
n!

n1!n2!n3!
q
n1
1 q

n2
2 q

n3
3 .

Viewing this as a function of q gives the likelihood function.

• The maximum likelihood estimate (MLE) is

q̂ =
(
n1

n
,
n2

n
,
n3

n

)
,

i.e. the values which give the highest probability to the observed data
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The Dirichlet distribution, as a prior for q

With the parameters specified we can think about their prior.

• We need a prior distribution over (q1, q2, q3) — that respects all three

probabilities lying in [0,1], and adding to 1

• The Dirichlet distribution satisfies these requirements. Denoted Dirichlet(v1, v2, v3)

it has density:

p(q1, q2, q3) =
Γ(v1 + v2 + v3)

Γ(v1)Γ(v2)Γ(v3)
× qv1−1

1 q
v2−1
2 q

v3−1
3

∝ q
v1−1
1 q

v2−1
2 q

v3−1
3

where Γ(·) denotes the gamma function.
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The Dirichlet distribution, as a prior for q

• Viewed as a prior, v1, v2, v3 > 0 are specified to reflect what we know about

(q1, q2, q3)

• Note that the Dirichlet generalizes the Beta, and in particular we can view

v1, v2, v3 as acting like having those number of observations in each category.

• The Dirichlet distribution can be used with general multinomial distributions

(i.e. for k = 2,3, ... categories).

• The beta distribution is a special case of the Dirichlet, with only two categories
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The Dirichlet distribution, as a prior for q

• The mean and variance are

E[qi] =
vi

v1 + v2 + v3
=
vi
v

Var(qi) =
E[qi](1− E[qi])

v1 + v2 + v3 + 1
=

E[qi](1− E[qi])

v + 1

for i = 1,2,3, where v = v1 + v2 + v3.

• Large values of v increase the influence of the prior

• The Dirichlet uses it single parameter (v) to control both location and spread,

which is a deficiency.

• Quartiles can be calculated empirically, i.e. from samples.
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The Dirichlet distribution, as a prior for q

We use ternary plots (see below left) to illustrate Dirichlet samples (below right,

from Dirichlet(1,1,1)) and densities (next slides).
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The Dirichlet distribution, as a prior for q

Densities, shown on ternary plots:

Dirichlet(1.5,1.5,1.5) Dirichlet(6,6,6) Dirichlet(6,4,1)
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The Dirichlet distribution, as a prior for q

Plotting one or two elements of q from Dirichlet(1,1,1), with mean (1/3,1/3,1/3):
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The Dirichlet distribution, as a prior for q

Plotting one or two elements of q from Dirichlet(6,6,6), with mean (1/3,1/3,1/3):
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The Dirichlet distribution, as a prior for q

And from Dirichlet(6,4,1), with mean (6/11,4/11,1/11) ≈ (0.55, 0.36, 0.09):
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The Dirichlet distribution, as a prior for q

While helpful, D, ψ and f are complex functions of q1, q2, q3 and given a Dirichlet

prior for the latter do not have known posterior forms.

• The “flat” prior for q, Dirichlet(1,1,1), does not correspond to a flat prior

for D, f, ψ, as the next slide shows

• With a ‘flat’ Dirichlet(1,1,1) prior the prior probability that f > 0 is 2/3.
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The Dirichlet distribution, as a prior for q

Samples from a

Dirichlet(1,1,1), for

various functions of q :

q1

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
10

00
0

q2

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
10

00
0

q3

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
10

00
0

p1
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00

p2

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00

D

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2

0
40

00
80

00

f

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
30

00
70

00

ψ

F
re

qu
en

cy

0 1 2 3 4

0
15

00
0

35
00

0
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The Dirichlet distribution, as a prior for q

Contour plots of {q1, f} and {p1, f} when {q1, q2, q3} ∼Dirichlet(1,1,1)
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Posterior Distribution

Combining the Dirichlet (v1, v2, v3), with the multinomial likelihood, conjugacy

gives us the posterior:

p(q1, q2, q3|n) ∝ Pr(n|q)× p(q)

∝ q
n1
1 q

n2
2 q

n3
3 × q

v1−1
1 q

v2−1
2 q

v3−1
3

= q
n1+v1−1
1 q

n2+v2−1
2 q

n3+v3−1
3 ,

which we recognize as another Dirichlet:

Dirichlet(n1 + v1, n2 + v2, n3 + v3).

Just like the beta prior/binomal likelihood, this behaves as if we had observed

counts (n1 + v1, n2 + v2, n3 + v3).
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Choosing a Prior

• Recall the prior mean is (
v1

v
,
v2

v
,
v3

v

)
.

• The posterior mean for the expected proportion of counts in cell i is

E[ qi|n ] =
ni + vi
n+ v

=
ni
n

n

n+ v
+
vi
v

v

n+ v
= MLE×W + Prior Mean× (1−W),

where n = n1 + n2 + n3, v = v1 + v2 + v3 and i = 1,2,3.

• The weight W = n
n+v is the proportion of the total information (n + v) that

is contributed by the data (n), versus that from the prior

• These forms help to choose v1, v2, v3.
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Choosing a Prior

• As with the beta distribution we can specify the prior mean, and the relative

weight that the prior and data contribute: n and v are on a comparable scale

• For example, suppose we believe that event 1 is four times as likely as each

of event 2 or event 3. Then we specify the means in the ratios 4:1:1.

• Suppose n = 24 and we wish to allow the prior contribution to be a half of

this total (and therefore a third of the complete information). Then the prior

sample size is v = 12 and the prior mean requirement gives

v1 = 8, v2 = 2, v3 = 2.

4.23



Choosing a Prior

An obvious choice of parameters is v1 = v2 = v3 = 1 to give a prior that is
uniform over the simplex : (but not over all parameters, as we’ve seen)

π(q1, q2, q3) = 2, for 0 < q1, q2, q3 < 1, and q1 + q2 + q3 = 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q1

q 2
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Otters again

• The data is n1 = 37, n2 = 20, n3 = 7.

• We assume a flat Dirichlet prior on the allowable values of q: v1 = v2 = v3 = 1.

• This gives the posterior as Dirichlet(37 + 1,20 + 1,7 + 1) with posterior

means:

E[q1|n] =
1 + 37

3 + 64
=

38

67

E[q2|n] =
1 + 20

3 + 64
=

21

67

E[q3|n] =
1 + 7

3 + 64
=

8

67
.

• Note the similarity to the MLE

q̂ =
(

37

64
,
20

64
,

7

64

)
.
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Otters again

The joint posterior, on a ternary plot:

The magenta line shows all parameter

values where exact HWE holds – so strong

support for being at least close to HWE.

Note: an approximate frequentist 95%

confidence region is bounded by the

contour ×20 lower than the likelihood’s

peak.
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Otters again

Summaries of 1 and 2 parameters, with MLE, and MLE under HWE.
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Otters again

Notes:

• As expected with a sample size of n = 64 and a flat prior (broadly equivalent

to n = 3), the MLE is in the posterior’s high support region

• The posterior is a little asymmetric, and its contours are not (quite) ellipses

• Asymptotic confidence intervals/regions (e.g. q̂i ± 1.96 × se(q̂i), or dropping

down ×20 from the likelihood peak) would rely on ≈symmetry & ≈elliptical

contours in the likelihood

• Credible intervals/regions are ‘exact’, in the sense of exactly summarizing the

posterior. This differs from ‘exact’ frequentist coverage, or control of T1ER

under the null
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Otters again

For the more complex 1D measures of HWE violation:

• Again, there are no closed forms for these densities
• In all cases, ×2 the minimum tail area (a Bayesian analog of the two-sided p-

value) is 0.096, from 5000 posterior samples. (Similar to exact test’s p=0.11)
• Bayes Factors are available in packaged code — note results are sensitive to

the priors on ‘nuiscance’ parameters, a known issue with Bayes Factors
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INLA

To calculate posteriors, so far we’ve seen

• Conjugate analyses: particularly priors for particular models give posteriors
without any special calculation
• Direct sampling: knowing the posterior and sampling from it (particularly

convenient for functions of parameters)
• Rejection sampling: Sampling points from the prior and (perhaps!) accepting

them, based on likelihood known [only] up to a constant

• Approximations: e.g. assuming point estimate and standard error give a
≈Normal likelihood – formally known as Laplace approximation

For many widely-used models (i.e. those used in linear regression, logistic
regression, Poisson regression, linear mixed models etc) Integrated Nested Laplace
Approximation provides a a sophisticated and fast way to get the posterior.
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INLA method

• INLA is provided via a non-CRAN R package,

at http://www.r-inla.org/home

• No version for R 4.3 yet, current version is

for R 4.2

• It’s a large download! With many dependen-

cies – updating can be an issue

• The INLA site has many examples, FAQs,

other useful material

• The method is becoming increasingly popular

as a Bayesian computational tool, in large

part because of the package
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INLA method

Warning: math ahead, but it’s optional

• INLA combines Laplace approximations and numerical integration in a very

efficient manner – first introduced by Rue et al (2009)

• The method is designed for latent Gaussian models (LGMs), i.e. models with

Normal likelihoods and/or priors, but this is a huge set

• Suppose the model has the form

yi|xi, θθθ1 ∼ p(yi|xi, θθθ1) (Likelihood Function)

x|θθθ2 ∼ N(000,Q(θθθ2)−1)

where x denotes a vector of variables with normal priors, for example,

regression coefficients and random effects and θθθ1 and θθθ2 are variance

components.
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INLA method

• We also have a prior, π(θθθ), for θθθ = [θθθ1, θθθ2] — non-normal, because the variance

component parameters have to be positive (among other constraints)

• The posterior has the form:

π(x, θθθ | y) ∝ π(θθθ)π(x | θθθ2)
∏
i

p(yi | xi, θθθ1)

∝ π(θθθ) | Q(θθθ2) |p/2 exp

−1

2
xTQ(θθθ2)x +

∑
i

log p(yi | xi, θθθ1)
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INLA method

INLA calculates the univariate posterior’s marginals:

π(θj|y) =
∫ ∫

π(x, θθθ|y) dxdθθθ−j

=
∫
π(θθθ|y) dθθθ−j

π(xi|y) =
∫ ∫

π(x, θθθ|y) dx−idθθθ

=
∫ [∫

π(xi,x−i|θθθ,y)dx−i

]
π(θθθ|y) dθθθ =

∫
π(xi|θθθ,y)π(θθθ|y) dθθθ

The latent field x and the variance components θθθ are treated differently by INLA,
because the latter are less normal-like in general, even after reparameterization.

The nested part of INLA reflects that given values of θθθ Laplace approximations
are carried out for x, and these are averaged over using numerical integration
techniques.
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INLA method: calculating posteriors

We now describe the various approximations used in INLA.

The marginal posterior for θθθ is, for any value of x,

π(θθθ|y) =
π(x, θθθ|y)

π(x|θθθ,y)

∝
p(y|x, θθθ)p(x|θθθ)π(θθθ)

π(x|θθθ,y)

The numerator is available, while the denominator is in general not. The Laplace
approximation instead uses

π̂(θθθk|y) ∝
p(y|x, θθθk)p(x|θθθk)π(θθθk)

π̂G(x|θθθk,y)

where π̂G(x|θθθk,y) is the Gaussian approximation to the conditional which is
obtained by matching the mode and the curvature at the mode.
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INLA method: calculating posteriors

The marginal π(xi|y) needs to be calculated for a potentially very long vector

x. We could take the marginal from π̂G(x|θθθk,y) but this is generally not very

accurate.

As an alternative, rewrite as

π(xi|y) =
π(x|θθθ,y)

π(x−i|xi, θθθ,y)

∝
p(y|x, θθθ)p(x|θθθ)π(x, θθθ)

π(x−i|xi, θθθ,y)

and the denominator can again be estimated estimated using a density approxi-

mation due to Tierney & Kadane (1986).
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INLA method: calculating posteriors

Rue et al (2009) describe a third approximation, the simplified Laplace which
corrects the Gaussian approximation for location and skewness using a Taylor
series about the mode. INLA’s algorithm (Martino & Riebler 2019) consists of

1. Explore the θθθ space via the approximation π̂(θθθk|y). Specifically, find the mode
of π̂(θθθk|y) and identify a set of points {θθθ1, . . . , θθθK} in the areas of high density.

2. Compute π̂(θθθk|y) for k=1. . . K, using the denominator approximation above

3. Calculate π̂(xi|θθθk,y) for k = 1, . . . ,K using one of Gaussian, Laplace,
simplified Laplace.

4. Use numerical integration to approximate the marginal,

π̂(xi|y) =
K∑
k=1

π̂(xi|θθθk,y)× π̂(θθθk|y)∆k,

using points and weights {θθθk,∆k, k = 1, . . . ,K}.
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Exploring the θθθ space

First, a “good” parameterization is found (often this is achieved by simply

transforming to the real line), we assume that θθθ satisfies this; also let dim(θθθ) = m.

Second, find the mode, θθθ?, and the Hessian matrix H; let H−1 = VΛΛΛV−1 be the

eigen decomposition, then form the new standardized variable:

z = (VΛΛΛ1/2)−1(θθθ − θθθ?),

which adjusts for location, scale, and rotation.
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Exploring the θθθ space

Rue et al (2009) describe three methods for exploration:

• grid: This approach builds a grid for the standardized variable z. Unfortunately

the number of points grows exponentially with m; if we use p points in each

dimension, pm are required in total

• empirical Bayes: just take the posterior mode only, i.e., a single point

• CCD: use a classical design, specifically the central composite design (CCD)

– integration points are placed on spheres
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Grid versus CCD

Grid (left) and CCD (right) points for numerical integration, from Wang et al’s

free book.
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INLA: Posterior sampling

Marginals are the standard output of INLA, but various operations may be carried

out using the functions:

• inla.dmarginal for density values

• inla.pmarginal for the CDF

• inla.qmarginal for quantiles

• inla.rmarginal for random samples

• inla.hpdmarginal for highest posterior density (HPD) credible regions

• inla.emarginal computes the expected values of a function of a parameter

• inla.tmarginal calculates the marginal distribution of a transformation of a

latent variable or hyperparameter.
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INLA: Practical Advice

Some functionals cannot be obtained using these functions, so samples may be

drawn from an approximation to the posterior∗, and manipulated:

• inla.posterior.sample() draws samples from the approximate posterior distri-

bution of βββ and θθθ.

• To make use of this function, use control.compute = list(config = TRUE) in

the INLA model fit.

• Included in the arguments is selected which allows only specific components

to be sampled.

• In general, the returned sample contains

"hyperpar" "latent" "logdens"

∗for the latent field x we sample from a mixture of multivariate Gaussians, where the weights
correspond to the integration weights (for the grid and CCD options).
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INLA: LHON again

We return to the LHON example, analyzed in Session 3 with rejection sampling.

# setup data
cc.dat <- data.frame(x=c(0,1,2), success=c(6,8,75), fail=c(10,66,163))

# non-Bayes analysis
logitmod <- glm(cbind(success,fail)~x,family="binomial", data=cc.dat)
coef(summary(logitmod))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8076928 0.4553938 -3.969515 7.201898e-05
x 0.4787428 0.2504594 1.911459 5.594568e-02
confint.default(logitmod)

2.5 % 97.5 %
(Intercept) -2.70024830 -0.9151373
x -0.01214865 0.9696342
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INLA: LHON again

Recall we set up the diffuse prior to have 95% point log(5): telling INLA about
this and getting the posterior:

Upper95 <- log(5)
sigma <- Upper95/qnorm(0.95)
cc.inla <- inla(success~x,family="binomial",data=cc.dat,Ntrials=success+fail,

control.fixed=list(mean.intercept=c(0),prec.intercept=c(1/10),
mean=c(0),prec=c(1/sigma^2)))

summary(cc.inla)
Time used: Pre = 0.236, Running = 0.107, Post = 0.0166, Total = 0.359

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) -1.760 0.431 -2.605 -1.760 -0.916 -1.760 0
x 0.449 0.237 -0.016 0.449 0.914 0.449 0

• Non-Bayes gave 0.48 (-0.01, 0.97), here we get 0.45 (-0.02, 0.91), rejection
sampling with B = 50,000 samples gives 0.45 (-0.01, 0.93).
• The kld column indicates a distance between the posterior approximated in

two ways, i.e. they agree.
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INLA: LHON again

And for the more informative prior:

Upper975 <- 1.5
sigma <- log(Upper975)/qnorm(0.975)
cc.inf.inla < inla(success~x,family="binomial",data=cc.dat,Ntrials=success+fail,

control.fixed=list(mean.intercept=c(0),prec.intercept=c(1/10),
mean=c(0),prec=c(1/sigma^2)))

summary(cc.inf.inla)
Time used:

Pre = 0.269, Running = 0.19, Post = 0.0167, Total = 0.476
Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -1.332 0.290 -1.899 -1.332 -0.764 -1.332 0
x 0.201 0.154 -0.100 0.201 0.502 0.201 0

• Here we get 0.20 (-0.10, 0.50) for the log odds ratio, versus rejection
sampling’s 0.20 (-0.09, 0.51)
• The Monte Carlo error/approximation error are massively smaller than

uncertainty due to the limited sample size. Does 0.50 vs 0.51 matter?
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INLA: LHON again

The inla.dmarginal() function can be used with e.g. curve() to plot posteriors:

−1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

β1

de
ns

ity

diffuse
informative

prior
posterior
non−Bayes CI
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INLA: LHON again

And using inla.tmarginal(fun=exp) to get odds ratio’s posterior, not the log OR;
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Pros and Cons of INLA

Advantages:

• Quite widely applicable: General-

ized Linear Mixed Models (GLMMs)

including temporal and spatial error

terms – many book-length treat-

ments now available

• Very fast — enabling bootstrap-

ping, leave-one-out, etc

• Works from within R

Disadvantages:

• Restricted to models with Gaussian

random effects – Template Model

Builder is more flexible, but the TMB

package needs you to write your

own C++

• Spotting with INLA’s approxima-

tion fails takes experience, but

though lots of empirical evidence is

being gathered
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Summary

• With higher-dimensional parameters – such as compositional vectors modeling

options become more limited, and priors harder to think about

• INLA provides a hugely flexible system for evaluating posteriors. Understand-

ing exactly what was done is more work than e.g. rejection sampling

• INLA’s speed makes sensitivity analysis (to the prior, or individual data points)

much more plausible
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