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Outline

Continuing our look at Bayesian inference for binomial data:

• Prior specification

• Testing

• Logistic regression

• Predictive distributions
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Prior Specification

• Particularly for small datasets, it is a good idea to examine the sensitivity of

inference to the prior choice, particularly for those parameters for which there

is little information in the data (e.g. variances in random effects models)

• An obvious way to find sensitivities is to compare the posterior under various

priors, but experience often helps

• For subjective priors, that reflect the data analyst’s belief about the unknowns,

sensitivity isn’t a bad thing if the prior can be justified.
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Prior Specification

• Sometimes we can specify priors that, in some sense, allows the data to

dominate the posterior. (No great name, but weakly-informative suggested)

• Priors can also be found (in some settings) that produce point estimates and

intervals that give a good non-Bayesian properties, i.e., have good frequency

properties – bias, coverage, etc. (“frequentist pursuit”)

• Such priors provide a baseline to compare analyses with more substantive

priors.

• Other names for such priors are objective, reference and non-subjective
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Prior Specification

For the beta prior/binomial likelihood, recall we have to specify the Beta’s
parameters a and b, which are difficult to interpret.

• The posterior mean is a weighted average:

E[θ|y] =
y + a

N + a+ b
=

y

N

N

N + a+ b︸ ︷︷ ︸
W

+
a

a+ b

a+ b

N + a+ b︸ ︷︷ ︸
1−W

.

• Viewing N + a+ b as ‘total’ sample size suggests a way to choose a and b
• ...where we specify the prior mean mprior = a/(a + b) and the “prior sample

size” Nprior = a+ b, then solve for a and b via

a = Nprior ×mprior

b = Nprior × (1−mprior).

• Intuitively, a acts like a prior number of successes and b like a prior number
of failures
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A Binomial Example

• Suppose we set Nprior = 5 and mprior = 2
5

• It is as if we saw 2 successes out of 5
• Suppose we obtain data with y = 7, N = 10 and so y

N = 7
10

• Hence W = 10/(10 + 5) and

E[θ|y] =
7

10
×

10

10 + 5
+

2

5
×

5

10 + 5

=
9

15
=

3

5
.

• Solving:

a = Nprior ×mprior = 5×
2

5
= 2

b = Nprior × (1−mprior) = 5×
3

5
= 3

• This gives a Beta(y + a,N − y + b) = Beta(7 + 2,3 + 3) posterior
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A Binomial Example

Updating of a Beta(2,3) prior

by likelihood proportional to

a Beta(7,3) density, giving a

Beta(7+2,3+3) posterior.
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Choosing a Prior: Approach Two

A convenient & alternative way to choose a, b is specifying two prior quantiles

• For example, specify that Pr(θ < 0.1) =

0.05 and Pr(θ > 0.6) = 0.05, and find the

a and b values that provide this.

• We usually find the solutions numerically;

for example, solving

(p1 − Pr(θ < q1|a, b))2 +

(p2 − Pr(θ < q2|a, b))2 = 0

for a, b. (No prizes for elegance!)
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Difference in Binomial Proportions

These methods extend naturally to a pair of samples:

• Suppose we have two binomial observations:

Y1|θ1 ∼ Binomial(N1, θ1), for sample 1

Y2|θ2 ∼ Binomial(N2, θ2), for sample 2

• We want inference on θ1 − θ2 (the risk difference or absolute risk difference)

• With independent beta priors on θ1 and θ2, sampling from the posterior for

p(θ1− θ2|y1, y2) is straightforward; just sample from the beta posterior for θ1

and θ2 independently.
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Difference in Binomial Proportions

• Savage et al (2008) study allele frequencies within a gene linked with skin

cancer

• We want to examine differences in allele frequencies between populations.

• Here, we examine one variant in Northern European (NE) and United States

(US) populations

• Let θ1 and θ2 be the allele frequencies in the NE and US population from

which the samples were drawn, respectively.

• The allele frequencies were 10.69% and 13.21% with sample sizes of 650 and

265, in the NE and US samples, respectively. (Counts of 69/650 and 35/265)

• We assume independent Beta(1,1) priors on each of θ1 and θ2.
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Difference in Binomial Proportions

The joint posterior density for θ1 and

θ2, as a contour plot with the samples

superimposed:

The posterior probability that θ1 > θ2

is 0.12 (computed as the proportion

of the samples in the green zone).

The data don’t strongly suggest ei-

ther group has a higher/lower allele

frequency.
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Difference in Binomial Proportions

The exact posterior for the difference θ1 − θ2 is messy to work with – it’s a
convolution of two beta distributions. But using the samples we already took,
we can get a very good approximation without further work;
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Bayes Factors for Hypothesis Testing

The Bayes factor (BF) provides a summary of the evidence for a particular
hypothesis/model compared to another

• For null hypothesis H0 and alternative H1, the simplest definition is

BF =
Pr(y|H0)

Pr(y|H1)
,

i.e. the probability of the data under H0 divided by the probability of the data
under H1. Values of BF > 1 favor H0 while values of BF < 1 favor H1.
• The BF is similar to the likelihood ratio,

LR =
Pr(y|H0)

Pr(y|θ̂)

where θ̂ is the MLE under H1; H0 usually specifies θ = 0. BF and LR are
identical if there are (unusually!) no unknown parameters in H0 and H1, but
otherwise the BF averages over them and LR does not.
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Calibration of Bayes Factors

Kass & Raftery (1995) suggest these interpretations of BFs:

1/Bayes Factor Evidence Against H0
1 to 3.2 Not worth more than a bare mention
3.2 to 20 Positive
20 to 150 Strong
>150 Very strong

These provide a guideline (“T-shirt sizes”) but impact of right/wrong conclusions

in context should also be considered.
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Bayes Factor: another derivation

The odds of an event is the probability the event happens, divided by

the probability it does not.

Odds[A ] =
P[A ]

1− P[A ]
, P[A ] =

Odds[A ]

1 + Odds[A ]

If we view the ‘true model’ (i.e. H0 or H1) as an unknown, then

P[H0|y ]

P[H1|y ]
=

P[ y|H0 ]

P[ y|H1 ]
×

P[H0 ]

P[H1 ]

i.e. Posterior Odds of H0 = Bayes Factor× Prior Odds

• The Bayes Factor tells us how much the data update the prior odds
for/against H0
• Neatly, the BF does not depend on the prior odds of H0, H1 – though the

prior on parameters in the null/alternative models will affect BF
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Example: Bayes Factors for Binomial Data

For the usual Binomial model with a Beta(a, b) prior, if we are interested in

H0 : θ = 0.5 versus H1 : θ 6= 0.5.

The numerator and denominator of the Bayes factor are:

Pr(y|H0) =

(
N
y

)
0.5y0.5N−y

Pr(y|H1) =
∫ 1

0

(
N
y

)
θy(1− θ)N−y

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1dθ

=

(
N
y

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a+ b)
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Example: Bayes Factors for Binomial Data
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Analysis of ASE Data

Summarizing the approaches we’ve considered:

• Posterior probabilities of one region: calculate

Pr(θ < 0.5|y)

and check if it exceeds some threshold indicating further study is worthwhile,
e.g.

Pr(θ < 0.5|y) < 0.01 or Pr(θ < 0.5|y) > 0.99

• Bayes Factors for θ = 0.5: calculate the BF and compare it to some threshold
for indicating worth of further study, e.g., if reciprocal of the Bayes factor is
greater than 150
• Posterior probability of θ = 0.5: like BFs, but with assumed prior support π0

for θ = 0.5, compare P[ θ = 0.5 ] = BF π0/(1−π0)
1+BF π0/(1−π0) to a chosen threshold
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Analysis of ASE Data

Histogram of the posterior

probabilities Pr(θ < 0.5|y) for

the 4,844 ASE genes.

Many have probabilities θ close to

0 or 1, indicating allele specific

expression (ASE).
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Analysis of ASE Data

Right: plotting Pr(θ < 0.5|y)

versus the p-values from an exact

two-sided test.

Generally, small p-values have

posterior probabilities close to 0

and 1.

The weird lines are due to discrete-

ness of the data.
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Analysis of ASE Data

Plotting -log(BF) against posterior

probability Pr(θ < 0.5|y) (right):

• Large BF values correspond to

strong evidence of ASE

• This agrees with classical test-

ing: large BF values correspond-

ing to Pr(θ < 0.5|y) being close

to 0 and 1.
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Analysis of ASE Data

• Applying Bonferroni correction to control the family wise error rate at 0.05,

gives a p-value threshold of 0.05/4844 = 10−5 and 111 ‘discoveries’. (More

on this later!)

• There were 278 genes with Pr(θ < 0.5|y) < 0.01 and 242 genes with Pr(θ <

0.5|y) > 0.99.

• Following Kass & Raftery’s guideline for very strong evidence that 1/BF >

150, there would be 197 discoveries. For less stringent evidence, i.e. strong

and very strong (reciprocal BF > 20) we make 359 discoveries.

For this form of hypothesis, the rankings of p-value and BF are very similar, but

choosing the calibration – i.e. the threshold – remains challenging. (More on this

in Session 9)
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ASE output

Below are summaries of the ASE analysis – ordered according to logBFr, the
reciprocal Bayes factor – so high numbers correspond to strong evidence against
the null. postprob is the posterior probability of θ < 0.5.

allvals <- data.frame(Nsum,ysum,pvals,postprob,logBFr)
oBF <- order(-logBFr)
orderallvals <- allvals[oBF,]
head(orderallvals)

Nsum ysum pvals postprob logBFr
4751 437 6 5.340324e-119 1.000000e+00 267.9572
4041 625 97 1.112231e-72 1.000000e+00 161.1355
2370 546 468 8.994944e-69 2.621622e-69 152.2517
2770 256 245 1.127211e-58 2.943484e-59 129.6198
tail(orderallvals)

Nsum ysum pvals postprob logBFr
824 761 382 0.9422103 0.4567334 -2.086604
2163 776 390 0.9142477 0.4429539 -2.091955
3153 769 384 1.0000000 0.5143722 -2.097079
2860 1076 546 0.6474878 0.3129473 -2.146555
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Bayes Logistic Regression

To understand how binomial proportions pi vary with covariates xi, we often turn

to logistic regression models:

Yi|pi ∼ Binomial(Ni, pi)

log

(
pi

1− pi

)
= β0 + β1xi1 + · · ·+ βJxiJ

It is no longer possible to carry out a conjugate analysis by picking a convenient

prior, but a common prior choice is to take

π(β0, β1, . . . , βJ) =
J∏

j=0

N(0, τ2
j ),

for fixed values τ2
j , j = 0,1, . . . , J.

3.23



Logistic regression: LHON

We consider case-control data for Leber Hereditary Optic Neuropathy (LHON)

disease with genotype data for marker rs6767450:

CC CT TT Total
x = 0 x = 1 x = 2

Cases 6 8 75 89
Controls 10 66 163 239
Total 16 74 238 328

• We let x = 0,1,2 represent the number of T alleles (coded alleles, in most

GWAS-type analysis – or imputed dosage)

• Let p(x) represent the probability of being a case, given x copies of the T

allele.
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Logistic regression: LHON

For case-control studies, a popular choice is the multiplicative odds model:

p(x)

1− p(x)
= exp(β0)× exp(β1x),

with a binomial likelihood, i.e. independent outcomes for each individual. (This

is also called a logistic regression model.) It can also be written as stating that

logit (Pr(Y = 1|X = x)) = log

(
p(x)

1− p(x)

)
= β0 + β1x

or equivalently that

p(x) = Pr(Y = 1|X = x) =
eβ0+β1x

1 + eβ0+β1x
.
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Logistic regression: LHON

Interpretation of these coefficients:

• exp(β0), the odds of a sampled individual being a case, is of little interest

given the case-control sampling

• exp(β1) is the odds ratio describing the multiplicative change in odds for have

one T allele versus zero T alleles.

• exp(2β1) is the odds ratio describing the multiplicative change in odds for two

T alleles versus zero T alleles.

• The odds ratio exp(β1) approximates the relative risk a.k.a. risk ratio, for a

rare disease

• Very usefully, under plausible conditions then exp(β1)’s odds ratio is the same

as we’d observe in a (long!) prospective study
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Logistic regression: LHON

A Bayesian analysis adds a prior on β0 and β1 – which we need to choose.

• The intercept, β0, is typically very well-identified by the data, and so the
likelihood dominates most priors; we will use a diffuse N(0,10) prior
• For the log odds ratio β1, for a light constraint we use a Normal prior in which

there is
– 50% support for odds ratios above/below 1, i.e. log odds ratios

above/below 0
– 95% support for odds ratios below 5 (a large effect for a single variant)

• To center the prior at zero, we use N(0, σ2) – which has 95% point 1.645σ,
so σ = log(5)/1.645 = 0.978 gives the prior SD

Implementing this with rejection sampling for 5000 samples... (code on the course
site)
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Logistic regression: LHON
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Logistic regression: LHON

Prior belief in allele-specific odds ratios of 5 is (subjectively) optimistic: even for

strongly heritable traits, most variants don’t do much.

• To show the impact, we re-analyze the LHON data with the same diffues

prior on β0 but a much tighter prior on β1

• We use a N(0, σ2) prior where σ2 ensures the 97.5% point of the prior is

log(1.5) = 0.41

• In other words, we have prior probability 0.95 that the odds ratio lies between

2/3 and 3/2
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Logistic regression: LHON
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Logistic regression: LHON

• Clearly, the informative prior is adding non-trivial amounts of information

• The tighter prior on β1 (vertical direction) ends up increasing precision on β0

(horizontal) because the likelihood contours ‘slope’

• The slope of the posterior contours is less steep – reflecting the priors impact,

in addition to location and scale
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Logistic regression: LHON

Histograms of the posteriors for β1 from less (L) and more (R) informative priors,

with approx 95% confidence interval and quantile-based 95% credible intervals.
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Prediction

• Suppose we see y successes out of N trials, and now wish to obtain a predictive
distribution for a future experiment with M trials.
• Let Z ∈ {0,1, . . . ,M} be that experiment’s number of successes
• Predictive distribution:

Pr(z|y) =
∫ 1

0
p(z, θ|y)dθ

=
∫ 1

0
Pr(z|θ, y)p(θ|y)dθ

=
∫ 1

0
Pr(z|θ)︸ ︷︷ ︸
binomial

× p(θ|y)︸ ︷︷ ︸
posterior

dθ

where we move between lines 2 and 3 because z is conditionally independent
of y given θ, i.e.,

Pr(z|θ, y) = Pr(z|θ).
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Prediction

Continuing with the calculation:

Pr(z|y) =

∫ 1

0
Pr(z|θ)× p(θ|y)dθ

=

∫ 1

0

(
M
z

)
θz(1− θ)M−z

×
Γ(N + a+ b)

Γ(y + a)Γ(N − y + b)
θy+a−1(1− θ)N−y+b−1dθ

=

(
M
z

)
Γ(N + a+ b)

Γ(y + a)Γ(N − y + b)

∫ 1

0
θy+a+z−1(1− θ)N−y+b+M−z−1dθ

=

(
M
z

)
Γ(N + a+ b)

Γ(y + a)Γ(N − y + b)

Γ(a+ y + z)Γ(b+N − y +M − z)

Γ(a+ b+N +M)

for z = 0,1, . . . ,M .

A likelihood approach would take the predictive distribution as Binomial(M, θ̂)
with θ̂ = y/N : this does not account for estimation uncertainty, and so tends to
be anti-conservative.
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Prediction

Likelihood and Bayesian predic-

tive distribution of seeing z =

0,1, . . . ,M = 10 successes, after

observing y = 2 out of N = 20

successes (with a = b = 1).
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Predictive Distribution: A General Approach

The posterior and sampling distributions won’t usually combine so conveniently.

In general, we may form a Monte Carlo estimate of the predictive distribution:

p(z|y) =
∫
p(z|θ)p(θ|y)dθ

= Eθ|y[p(z|θ)]

≈
1

S

S∑
s=1

p(z|θ(s))

where θ(s) ∼ p(θ|y), s = 1, . . . , S, is a sample from the posterior.

This provides an estimate of the predictive distribution at the point z.
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Predictive Distribution: A General Approach

Alternatively, we may sample from p(z|θ(s)) a large number of times to reconstruct
the predictive distribution.

• First sample from the posterior:

θ(s)|y ∼ p(θ|y).

• Next sample from the likelihood:

z(s)|θ(s) ∼ p(z|θ(s)),

for s = 1, . . . , S.

• To give a sample z(s) from the

posterior – see example, right,

with S = 10,000 samples 0 1 2 3 4 5 6 7 8

z
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Summary

• Predictions are very natural under the Bayesian approach.

• Monte Carlo sampling provides flexibility of inference

• All this lecture considered Binomial sampling, for which there is only a single

parameter. For more parameters, prior specification and computing becomes

more challenging...as we shall see

• For estimation and with middle to large sample sizes, conclusions from

Bayesian and non-Bayesian approaches often coincide. One-sided tests are

similarly ecumenical

• For two-sided testing it’s more complex, as discussed in Lecture 9.
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Appendix: Bayesian Sequential Updating

• We show how probabilistic beliefs are updated as we receive more data.

• Suppose the data arrives sequentially via two experiments:

1. Experiment 1: (y1, N1).

2. Experiment 2: (y2, N2).

• Prior 1: θ ∼ Beta(a, b).

• Likelihood 1: y1|θ ∼ Binomial(N1, θ).

• Posterior 1: θ|y1 ∼ Beta(a+ y1, b+N1 − y1).

• This posterior forms the prior for experiment 2.

• Prior 2: θ ∼ Beta(a?, b?) where a? = a+ y1, b? = b+N1 − y1.

• Likelihood 2: y2|θ ∼ Binomial(N2, θ).

• Posterior 2: θ|y1, y2 ∼ Beta(a? + y2, b
? +N2 − y2).

• Substituting for a?, b?:

θ|y1, y2 ∼ Beta(a+ y1 + y2, b+N1 − y1 +N2 − y2).
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Appendix: Bayesian Sequential Updating

• Schematically:

(a, b)→ (a+ y1, b+N1 − y1)→ (a+ y1 + y2, b+N1 − y1 +N2 − y2)

• Suppose we obtain the data in one go as y? = y1 + y2 successes from N? =

N1 +N2 trials.

• The posterior is

θ|y? ∼ Beta(a+ y?, b+N? − y?),

which is the same as when we receive in two separate instances.
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Appendix: Birth Weight Example

We show an example provided by Wang et al, with data on 189 births to women

seen in a particular obstetric clinic.

The response variable LOW is a binary outcome indicating birth weight less than

2500 grams. We also see:

• LOW: Low birth weight; (0 = ≥ 2500g; 1 = < 2500g)

• AGE: Mother’s age

• LWT: Mother’s weight

• RACE: Listed race of mother; (1 = white; 2 = black; 3 = other)

• SMOKE: Smoking status during pregnancy; (0 = no; 1 = yes)

• HT: History of hypertension; (0 = no; 1 = yes)

• UI: Presence of uterine irritability; (0 = no; 1 = yes)

• FTV: Number of physician visits during the first trimester.
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Appendix: Birth Weight Example

Under priors with large variances τj we obtain very similar inference under

likelihood and Bayesian analyses.

MLE Std. Error Posterior Mean Posterior SD
(Intercept) 0.455 1.185 0.567 1.186

AGE -0.021 0.036 -0.021 0.036
LWT -0.017 0.007 -0.018 0.007

RACE2 1.290 0.528 1.340 0.528
RACE3 0.919 0.436 0.946 0.436

SMOKE1 1.042 0.395 1.075 0.395
HT1 1.885 0.695 1.974 0.694

UI1 0.904 0.449 0.933 0.449
FTV 0.059 0.172 0.056 0.172
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Appendix: Birth Weight Example

Posteriors p(βj|y), j = 0, . . . ,8.
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Appendix: Birth Weight Example

Posteriors for odds p(eβ0|y) and

odds ratios p(eβj |y), j = 1, . . . ,8.
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