
Bayesian Statistics for Genetics

Lecture 2: Binomial Sampling, part 1

June, 2024



Outline

Important ideas we will recap:

• Bayes’ Theorem – a statement of conditional probability

• Bayesian inference – using probability to describe belief

In this session:

• More formal analysis of the ACE study’s binomial model

• What to do with a posterior distribution?
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Bayes theorem: conditional probability

For a partition {H1, . . . , HK}, the axioms of probability imply the following:

• Rule of total probability:

K∑
k=1

P[Hk ] = 1

• Rule of marginal probability:

P[A ] =
K∑
k=1

P[A and Hk ] =
K∑
k=1

P[A|Hk ]P[Hk ]

Simple case: K = 2 with H1 = B and H2 = Bc (the complement of B):

P[A ] = P[A and B ] + P[A and Bc ]

= P[A|B ]P[B ] + P[A|Bc ]P[Bc ].
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Bayes’ Theorem: conditional probability

Some genetics! Jo∗ — a randomly-chosen father of two with at least one boy — has two
kids. Given that at least one is a boy; what’s the probability he has two boys?

Unconditional Conditional

P[ 2 Boys ] = 1/4 = 0.25 P[ 2 Boys|1 Boy ] = 1/3 ≈ 0.33

2.3



Bayes’ Theorem: conditional probability

Now a problem – not a trick! – to show that conditional probability can be
non-intuitive, and careful reasoning is needed;

Q. Jo has two children. Given that at least one is a boy who was born on a
Tuesday ; what’s the probability he has two boys?

• The ‘obvious’ (but wrong!) answer is to stick with 1/3. What can Tuesday
possibly have to do with it?
• It may help your intuition, to note that a boy being born on a Tuesday is a

(fairly) rare event;
– Having two sons would give Jo two chances of experiencing this rare event
– Having only one would give him one chance
– ‘Conditioning’ means we know this event occurred, i.e. Jo was ‘lucky’

enough to have the event
• Easier Q. Is P[ 2 Boys|1 Tues Boy ] > 1/3? or < 1/3?
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Bayes’ Theorem: conditional probability

All the possible births and sexes;

Q. When we condition, which row and column are we considering?

2.5



Bayes’ Theorem: conditional probability

Conditioning on at least one Tuesday-born boy;

... giving P[ 2 Boys|1 Tues Boy ]=13/27≈0.48, quite different from 1/3≈0.33.
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Bayes’ Theorem: conditional probability

Formal example: Let B = Female and Bc = Male . Suppose in a given
population over the age of 18:

P[B ] = 0.55, P[Bc ] = 0.45.

Event of interest: A =being diagnosed with diabetes.

In the US in 2018, for over 18 year olds, P[A|B ] = 0.095 and P[A|Bc ] = 0.11, so

P[A ] = P[A|B ]P[B ] + P[A|Bc ]P(Bc ]

= 0.095× 0.55 + 0.11× 0.45

= 0.05225 + 0.0495

= 0.10175

So 10.2% of the population have diabetes.
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Bayes theorem: Flipping around the conditioning

Bayes theorem : P(Hj|E) =

“Likelihood”︷ ︸︸ ︷
P(E|Hj)

“Prior”︷ ︸︸ ︷
P(Hj)

P(E)︸ ︷︷ ︸
Normalizing Constant

=
P(E|Hj)P(Hj)∑K

k=1 P(E|Hk)P(Hk)

for j = 1, . . . ,K.

Anticipating Bayesian inference:

• One begins with (prior) belief about events Hj, P(Hj), and...

• ...updates it to (posterior) belief P(Hj|E), given that event E occurs.

Note that the likelihood, on its own, doesn’t generally describe beliefs.

2.8



Bayes theorem: Flipping around the conditioning

What’s the probability that a person with diabetes is female?

In probability speak:

P(B|A) =
P(A|B)P(B)

P(A)

=
0.095× 0.55

0.10175
= 0.514

So there is a 0.514 chance that a randomly sampled person with diabetes is
female.

This is updated from our prior probability of being female P(B) = 0.55 – it’s a
slight reduction since males are more likely to have diabetes.
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Conditional independence

Conditional independence is a key concept when constructing statistical models
– we start by describing independence.

For events A and B, it is always true that,

P(A and B ) = P(A |B )× P(B ).

Bayes theorem:

P(B|A) =
P(A|B)P(B)

P(A)
.

Viewed in a Bayesian way, knowledge that A occurs has updated our beliefs about
B.

How about when we don’t learn anything from B’s occurrence?
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Conditional independence

Then

P(B |A ) = P(B )

or equivalently

P(A and B ) = P(A )× P(B ).

• The events A and B are said to be independent.

• Knowledge that A occurs does not affect our beliefs about B.

• Knowledge that B occurs does not affect our beliefs about A, i.e., this implies

P(A|B) = P(A).

If diabetes risk was the same in females and males, then knowing diabetes status,

A, would not tell us anything about the sex of the person, B, i.e., P(B|A) = P(B).
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Conditional independence

In statistical modeling, independence is rarely relevant, but conditional indepen-

dence is ubiquitous.

Extending this idea, events F and G are conditionally independent given H, if

P(F and G |H ) = P(F |H )× P(G |H ),

Or written another way:

P(F |G,H ) = P(F |H ).

Given H, knowledge that G occurred does not alter our beliefs in F occurring.
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Conditional Independence: Example

Data:

Suppose we know events:

F = { a patient develops cancer }
G = { patient’s parent’s genotype }
H = { patient’s genotype }

Informal statement:

If we know the patient’s genotype H,

does knowledge of the parents’ geno-

type G give any additional information?

Formal statement:

Does

P(F |H ) = P(F |G,H )?

Answer: In general, conditional independence will hold, but not on all occasions;

in genomic imprinting genes are expressed in a parent-of-origin-specific manner,

i.e., the expression of the gene depends upon the parent who passed on the gene.
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Conditional Independence: Example

Conditional independencies can be neatly expressed through graphs, as in this

example from the BUGS book (Lunn et al 2013)

Conditioning on a connecting node ‘blocks’ the path between other variables.

(This format may also be familiar from causal analysis)
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Conditional Independence: Example

In likelihood-based inference, conditional independence is very widely-used.

For example, the sampling model for data y = [y1, . . . , yn]T is often taken to be:

p(y|θθθ) = p(y1, . . . , yn|θθθ)

= p(y1|θθθ)× p(y2|y1, θθθ)× · · · p(yn|yn−1, . . . , y1, θθθ)

= p(y1|θθθ)× p(y2|θθθ)× · · · p(yn|θθθ)

=
n∏
i=1

p(yi|θθθ)

where we have assumed conditional independence, i.e., given θθθ, the observations
are independent.

Example: For coin tosses, the outcomes are conditionally independent, given
the probability of a head θ. (But what happens if we have > 1 coin?)
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Overview of Bayesian Inference

At a high level, with a model specified and data available, Bayes is automatic.
(Examples follow!) But it’s worth noting that integration, i.e. averaging, in some
form, is usually the biggest hurdle. Bayesian approaches to:

• Estimation: marginal posterior distributions on parameters of interest – similar
approaches permit testing. Need to integrate over the other parameters
• Prediction: via the predictive distribution, integrating over parameter uncer-

tainty
• Hypothesis Testing: Bayes factors give the relative support for different

ranges of θ – and a different form of testing. Need to average over different
submodels

We’ll describe all three in the context of a binomial model – in general we focus
on estimation and prediction.
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Elements of Bayes Theorem for a Binomial Model

Suppose the data consist of N Bernoulli (i.e. 0/1) responses yi, i = 1, . . . , N .

We assume these responses are conditionally independent, given a common

“success” probability θ.

Under this conditional independence assumption, the distribution of the total

y =
∑N
i=1 yi has to be a binomial distribution, in which

P[Y = y | θ ] =

(
N
y

)
θy (1− θ)N−y

is the probability of seeing Y = y, for the permissible values y = 0,1, . . . , N given

the probability θ.
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Elements of Bayes Theorem for a Binomial Model

Binomial distributions (right) for two values of

θ with N = 10 .

Fixing y, we may view the probability of the data

as a function of θ – when it is known as the

likelihood function:
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Elements of Bayes Theorem for a Binomial Model

The maximum likelihood estimate

(MLE) is the proportion of successes:

θ̂ =
y

N
= y,

and gives the highest probability to

the observed data, i.e., maximizes the

likelihood function. The standard error

of this estimate is√
θ(1− θ)/N.

which we approximate by√
θ̂(1− θ̂)/N.
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Binomial likelihoods for y = 5 (left)

and y = 10 (right), with N = 10. The

MLEs are indicated in red. 2.19



Bayes and frequentist estimates for binomial

If y = 0 (y = N), we get estimate θ̂ = 0 (=1) and a standard error of 0, which

is clearly problematic.

Agresti & Coull (1998) give a famous workaround, the“Adjusted Wald interval”:

with estimate

θ̃ =
4

N + 4

1

2
+

N

N + 4
y,

to give the interval:

θ̃ ± 1.96
√
θ̃(1− θ̃)/N.

It works well in practice, but what might be a more convincing justification for

it?
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Beta priors for Binomial θ

Recall Bayes Theorem: p(θ|y) ∝ p(y|θ)× p(θ).

• Bayes theorem requires the likelihood, which we have already specified as

binomial, and a prior.

• For a probability 0 < θ < 1 an obvious candidate prior is the uniform (i.e. flat)

distribution on (0,1): but this is too restrictive for general use.

• The beta distribution, Beta(a, b), is more flexible. (The uniform distribution

is a special case with a = b = 1.) We specify a and b in advance, i.e., a priori.

• The form of the beta distribution is

p(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

for 0 < θ < 1, where Γ(·) is the gamma function∗.
∗Γ(z) =

∫∞
0 tz−1e−tdt
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Beta priors for Binomial θ

• The Beta(a, b) distribution is valid† for a > 0, b > 0.

• How can we think about specifying a and b?

• As you may know, the Normal distribution is specified by its mean (µ) and

variance (σ2), but the beta distribution’s a and b are less simple.

• The mean and variance are:

E[ θ ] =
a

a+ b

Var[ θ ] =
E[θ](1− E[θ])

a+ b+ 1
.

Hence, increasing a and b concentrates the distribution about the mean.

†A distribution is valid if it is non-negative and integrates to 1
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Beta priors for Binomial θ

The quantiles, e.g. the median or the

10% and 90% points, are not available

as a simple formula, but are easily

obtained within software – in R we use

the function qbeta(p,a,b).

Beta distributions, Beta(a, b) (right).

The red lines indicate the means.
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Samples to Summarize Beta Distributions

Probability distributions and samples from distributions are equivalent, in a sense:
given a probability distribution we can generate samples, and given a big-enough
sample we can reconstruct their probability distribution. (More on this later!)

• Probability distributions can be investi-

gated by generating samples from them,

and then examining histograms, moments

and quantiles

• Right, some histograms of samples from

beta distributions for different choices of

a and b, with sample means in red

• Compare with previous slide to see the

duality
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Samples for Describing Weird Parameters

• Generating samples for e.g. a Beta’s

mean seems overkill – recall 2.22

• But for functions of the probability θ,

such as the odds θ/(1− θ), sampling is

the easiest method

• Once we have samples for θ we can

simply transform the samples to the

functions of interest.

• We may have clearer prior opinions

about the odds, than the probability.

• Right: samples from the prior on the

odds θ/(1 − θ) with θ ∼ Beta(10,10).

The red line indicates the sample mean.
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Issues with Uniform Priors

If we have little prior information about a parameter, we might think that a
uniform prior, i.e. a prior p(θ) ∝ const reflects this ignorance. But there are two
problems:

1. We can’t be uniform on all scales since, if φ = g(θ):

pφ(φ)︸ ︷︷ ︸
Prior for φ

= pθ(g
−1(φ))︸ ︷︷ ︸

Prior for θ

×
∣∣∣∣∣dθdφ

∣∣∣∣∣︸ ︷︷ ︸
Jacobian

and so if g(·) is a nonlinear function, the Jacobian will be a function of φ and
hence not uniform.

2. If the parameter is not on a finite range, an improper distribution will result
(that is, the form will not integrate to 1). This can lead to an improper
posterior distribution, and without a proper posterior we can’t do inference.

2.26



Issues with Uniform Priors

• For example, what does a flat prior on

Binomial θ imply about log odds φ =

log
(

θ
1−θ

)
? (Both are arguable ‘natural’

choices)

• The answer (right) is a very non-uniform

distribution
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Not being uniform on all scales need not be a problem, but do be aware of it, and

cautious with ‘flat’ priors. They don’t describe ignorance – often the opposite.
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Posterior Derivation: The Quick Way

When we want to identify a particular probability distribution we only need to

concentrate on terms that involve the random variable.

For example: as seen in 2.21, the form of the beta distribution is

p(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

But if we just knew the density was proportional to θa−1(1−θ)b−1, we could work

out the other terms – all they do is ensure p(θ) integrates to 1.

(We haven’t yet looked at Normal distrbutions, but for random variable X with

density of the form p(x) ∝ exp(c1x
2 + c2x) for constants c1 and c2, then we know

that the random variable X must have a Normal distribution.)
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Posterior Derivation: The Quick Way

For the binomial model with a beta prior, the posterior is

p(θ|y) = P(y|θ)× p(θ)

=
(N
y

)
θy(1− θ)N−y ×

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

but all we need to focus on is the terms in θ:

p(θ|y) ∝ θy(1− θ)N−y × θa−1(1− θ)b−1

= θy+a−1(1− θ)N−y+b−1.

From this form, we know the posterior must be a Beta(y+a,N−y+b) distribution
– and so can work out its mean, quantiles etc, just like we did for Beta priors.

This is an example of a conjugate Bayesian analysis, in which the prior is in the
same family as the posterior.
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Agresti and Coull’s adjusted interval

Recall, from earlier, the adjusted Wald interval:

θ̃ ± 1.96
√
θ̃(1− θ̃)/N , where

θ̃ =
1

2

4

N + 4
+ y

N

N + 4
.

Notice the link with the adjusted Wald interval for the 0 successes case, the

estimate is equal to the posterior mean with a Beta(a, b) prior with a = b = 2.
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Posterior Summaries

• Reporting a point estimate (e.g. posterior mean, or median) alone is rare

• Credible intervals – regions that capture a fixed proportion of the posterior

support (usually 95%) are the standard way to describe uncertainty.

• These also permit a form of testing, by reporting whether a 95% interval

contain the value θ0 = 0.5

• A typical way to construct a 90% posterior credible interval (θL, θU) is to solve

0.05 =
∫ θL

0
p(θ|y) dθ

0.95 =
∫ θU

0
p(θ|y) dθ
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Posterior Summaries

• The quantiles of a beta are not available in closed form, but are easy to

evaluate in R:

y <- 7; N <- 10; a <- b <- 1

qbeta(c(0.05,0.5,0.95),y+a,N-y+b)

[1] 0.4356258 0.6761955 0.8649245

• ...so the posterior median is 0.68 and a 90% credible interval is [0.44,0.86].

• Compare this to the MLE of 0.70 and asymptotic 90% confidence interval of

0.70± 1.645×
√

0.7× 0.3/10 = [0.46,0.94].
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Bayes and Frequentist Estimates for Binomial

Example: N = 10, y = 0 gives

θ̃ =
4

10 + 4

1

2
+

10

10 + 4
y =

4

28
= 0.14

with adjusted standard error√
θ̃(1− θ̃)/10 =

√
4

28

(
1−

24

28

)
/10 = 0.11

... but 0.14 ± 1.96×0.11 goes negative! Using Bayes instead with a Beta(2,2)
prior for θ:

y <- 0; N <- 10; a <- b <- 2; apost <- a+y; bpost <- b+(N-y)

qbeta(p=c(0.025,0.975), apost, bpost)

[1] 0.01920667 0.36029744

So a Bayesian 95% credible interval is (0.019,0.36).
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A more challenging example, from COVID

Suppose a seroprevalence test is carried out with

• Sensitivity, P[ +ve test | disease ] denoted δ and assumed known
• Specificity, P[ -ve test | no disease ] denoted γ and assumed known
• True prevalence denoted π – this is what’s of interest

We test n people and y are recorded as having the disease. Our inital model is

y|p ∼ Binomial(N, p)

where p is the probability of a +ve test result, with

p = P( +ve test )

= P( +ve test | disease )P( disease )

+P( +ve test | no disease )P( no disease )

= δπ + (1− γ)(1− π) = π(δ + γ − 1) + (1− γ)
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A more challenging example, from COVID

With this binomial model the MLE is (exercise!):

π̂ =
y −N(1− γ)

N(δ + γ − 1)
.

This estimate, and approximate confidence intervals, don’t do a good job of
avoiding negative prevalences.

A Bayesian model is

y|π ∼ Binomial(N, π(δ + γ − 1) + (1− γ))

π ∼ Beta(a, b)

Not conjugate!

However, a simple rejection algorithm (Gelfand & Smith 1992) can be imple-
mented that simulates samples from the posterior p(π|y).
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A more challenging example, from COVID

We’ll use a rejection algorithm to generate samples from the posterior. For
unknown parameter θθθ with likelihood p(y | θ̂θθ) with maximum value M = p(y | θ̂θθ)
for MLE θ̂θθ, the algorithm has two steps:

1. Generate θθθ ∼ π(θθθ) from the prior

2. Generate U ∼ U(0,1) and if

U <
p(y | θθθ)

M
,

accept that θθθ – otherwise return to 1.

The probability that a point is accepted is given by

pa =

∫
p(y | θθθ)π(θθθ)dθθθ

M
=
p(y)

M
.
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A more challenging example, from COVID

In early April, 2020, Bendavid et al recruited n=3330 residents of Santa Clara
County, California and tested them for COVID-19 antibodies. With y =50 positive
tests, the näıve estimate is 1.50%. We’ll assume sensitivity is δ = 0.8 and
specificity is γ = 0.995, and use a flat prior parameters with a = b = 1;

Prior and posterior sam-

ples for prevalence π. The

posterior median is 1.28%

and a 90% interval is

(0.87%,1.77%).

Histogram of π samples (truncated)
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See Gelman & Carpenter 2020 for a more comprehensive Bayesian analysis
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A more challenging example, from COVID

R code to do the analysis:

lik <- function(pi){ dbinom(y, n, pi*(delta+gamma-1) + (1-gamma) ) } # likelihood
M <- dbinom(y, n, y/n) # likelihood at MLE

set.seed(4) # random number seed
bigB <- 1E6 # number of step 1 samples to take
many.pi <- rbeta(bigB, 1,1) # samples from prior
many.u <- runif(bigB) # samples from uniform

post.pi <- subset( many.pi, many.u < lik(many.pi)/M ) # evaluation step

# summarize the posterior
length(post.pi)
[1] 6677
quantile(post.pi, c(0.5, 0.05, 0.95))

50% 5% 95%
0.012841460 0.008695393 0.017657390

This method works (eventually!) for any bounded likelihood.
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Summary

Conjugate analyses are computationally convenient but rarely available in practice.

Historically, the philosophical standpoint of Bayesian statistics was emphasized,

now pragmatism is taking over.

Benefits of a Bayesian approach:

• Inference is based on probability and output is very intuitive

• Framework is flexible, and so complex models can be built

• Can incorporate prior knowledge

• If the sample size is large, prior choice is less crucial (generally!)
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Summary

Challenges of a Bayesian analysis:

• Requires a likelihood and a prior, and inference is only as good as the

appropriateness of these choices.

• Computation can be daunting, though software is becoming more user-friendly

and flexible; later we will describe and illustrate a number of approaches

including INLA and Stan.

• One should be wary of models becoming too elaborate – we have the

technology to contemplate complicated models, but do the data support

complexity?
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Posterior Derivation: The Long Way

• The posterior can also be calculated by keeping in all the normalizing
constants:

p(θ|y) =
P(y|θ)× p(θ)

P(y)

=
1

P(y)

(
N
y

)
θy(1− θ)N−y

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

• The normalizing constant is

P(y) =

∫ 1

0
P(y|θ)× p(θ)dθ

=

(
N
y

)
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
θy+a−1(1− θ)N−y+b−1dθ

=

(
N
y

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a+ b)

• The integrand on line 2 is a Beta(y + a,N − y + b) distribution, up to a
normalizing constant, and so we know what this constant has to be.
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Posterior Derivation: The Long Way

• The normalizing constant is therefore:

P(y) =

(
N
y

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a+ b)

• This is a probability distribution, i.e.
∑N
y=0 P(y) = 1 with P(y) > 0, for

y = 0,1, . . . , N .
• For a particular y value, this expression tells us the probability of that value

given the model, i.e. the likelihood and prior we have selected: this will
reappear later in the context of hypothesis testing.
• Substitution of P(y) into (1) and canceling the terms that appear in the

numerator and denominator gives the posterior:

p(θ|y) =
Γ(N + a+ b)

Γ(y + a)Γ(N − y + b)
θy+a−1(1− θ)N−y+b−1

which is a Beta(y + a,N − y + b).
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The Posterior Mean: A Summary of the Posterior

• Recall the mean of a Beta(a, b) is a/(a+ b).
• The posterior mean of a Beta(y + a,N − y + b) is therefore

E[θ|y] =
y + a

N + a+ b

=
y

N + a+ b
+

a

N + a+ b

=
y

N
×

N

N + a+ b
+

a

a+ b
×

a+ b

N + a+ b
= MLE×W + Prior Mean× (1-W).

• The weight W is

W =
N

N + a+ b
.

• As N increases, the weight tends to 1, so that the posterior mean gets closer
and closer to the MLE.
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The Posterior Mean: A Summary of the Posterior

• Notice that the uniform prior a = b = 1 gives a posterior mean of

E[θ|y] =
y + 1

N + 2
.
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