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Overview

We'll cover only the key points from a very large subject... S n
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SECOND EpiTioN A Fiﬁt Col.lrse in
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What is Bayes' Rule, a.k.a. Bayes' Theorem?
What is Bayesian inference?

Where can Bayesian inference be helpful?
How does it differ from frequentist inference?
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Note: other literature contains many pro- and anti-
Bayesian polemics, many of which are ill-informed and —

Data Analysis
unhelpful. We will try not to rant, and aim to be accurate. .

Multilevel/Hierarchical
Models

Further Note: There will, unavoidably, be some discussion of epistemology,
philosophy concerned with the nature and scope of knowledge. But...

I.e.
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Overview

Using a spade for some jobs
and shovel for others does
not require you to sign up
to a lifetime of using only
Spadian or Shovelist philos-
ophy, or to believing that
only spades or only shovels
represent the One True Path
to garden neatness.

There are different ways of tackling statistical problems, too.
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Bayes’ T heorem

Before we get to Bayesian statistics™, Bayes' Theorem is a result from probability.
Probability is familiar to most people through games of chance;

LEFT HAND RIGHT FOOT

k Sorry! Necessary math ahead!
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Bayes’ T heorem

Bayes' T heorem describes conditional prob- P[A] = 5/10
abilities: for events A and B, P[ A|B] denotes
the probability that A happens given that B
happens. In this example;

o P[A|B] = % =1/3

P[B] = 3/10

P[A & not B]
= 4/10

1/10
e P[B|A] = 5§—10 =1/5
Bayes' Theorem states how P[A|B] and
P[ B|A] are related. Here it is: P[not A & not B] = 3/10
PlA and B Pl A 5/10
P[A|B] = | ] P[B|A]=—— [A] ..S0 here, 1/3=1/5 x / (V)

P[B] P[B] | 3/10

In words: the conditional probability of A given B is the conditional probability
of B given A scaled by the relative probability of A compared to B.
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Bayes’ T heorem

Why does it matter? If 1% of a
population have a genetic variant,
for a screening test with 80%
sensitivity and 95% specificity;

Test Positive
Have @
. Genetic
P[ Test -ve|no variant] = 95% Defect

P[ Test +ve|variant] = 80%
P[ Test +ve]
_ = b.75
P[ variant |
P[variant| Test +ve] ~ 14%

. i.e. most positive results are actually false alarms.

Mixing up P[ Test +ve|variant] and P[variant|Test +ve] is a classic case of the
Prosecutor’s Fallacy;, a small probability of evidence given innocence need NOT
mean a small probability of innocence given evidence.
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http://www.youtube.com/watch?v=Yg3EWaOVDXc

Bayes’ Theorem: continuous version

The ‘language’ of probability is much richer than just Yes/No events;

Categorical (probabilities)
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of the ‘a’ allele is 0.324-0.04=0.36, i.e.
36%.
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Probability of sets (e.q. a
randomly-selected adult SBP>170
or <110mmHg) is given by the

corresponding area.
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Bayes’ T heorem: continuous version

There are ‘rules’ of probability. Denoting the density at outcome y as p(y);

e [ he total probability of all possible outcomes is 1 - so densities integrate to
one;

/yp(y)dy =1,

where ) denotes the set of all possible outcomes
e For any a<bin ),

b
P[Y € (a,b)] =/ p(y)dy
e For general events; ’

P[Y € Vo] = /y p(y)dy,

0
where ) is any subset of the possible outcomes )y

For discrete events, replace integration by addition over possible outcomes.
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Bayes’ T heorem: continuous version

The same ideas for two random variables, where the density is a surface;

80 100 120
l l

Diastolic BP (mmHg)

60
l

40

80 100 120 140 160 180

110 )
70 90 'gystolic BP Systolic BP (mmHg)

. Where the total ‘volume’ is 1, i.e. [y yp(z,y)dzdy = 1.
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Bayes’ T heorem: continuous version

To get the probability of outcomes in a region we again integrate;

Diastolic BP (mmHQ)

120

100
l

60

40

I I I I
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Systolic BP (mmHg)

[ 100 < SBP < 140

&
60 < DBP < 90

I I
160 180

~ 0.52

Diastolic BP (mmHQ)

60 80 100 120
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[ SBP > 140 |

OR
DBP > 90

160 180

~ 0.28
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Bayes’ T heorem: continuous version

For continuous variables (say systolic and diastolic blood pressure) think of
conditional densities as ‘slices’ through the distribution. Formally:

p(zly =yo) = p(w,yo)//Xp(a:,yo)dw
p(ylz =z0) = p(z0,y)/ /yp(wo,y)dy,

and we often write these as just p(z|y), p(y|x).
Also, the marginal densities (shaded curves) are
given by

p(x) = /yp(w, y)dy

p(y) = /Xp(w, y)dx.
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Bayes’ T heorem: continuous version

Bayes' theorem connects different conditional distributions —

Bayes' Theorem says the relationship between
conditional densities is;

. N p(x)
p(zly) = p(ylz)——=< o)

Because we know p(x|y) must integrate to one,
we can also write this as

p(z|y) o< p(y|z)p(x).

Bayes' Theorem states that the conditional
density is proportional to the marginal scaled by
the other conditional density.
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Bayesian statistics

So far, nothing’s controversial; Bayes' Theorem is a math result about the
‘language’ of probability, that can be used in any analysis describing random

variables, i.e. any data analysis.

Q. So why all the fuss?
A. Bayesian statistics uses more than just Bayes' Theorem

In addition to describing random variables, Bayesian statistics uses the

‘language’ of probability to describe what is known about unknown parameters.

Note: Frequentist statistics , e.g. using p-values & confidence intervals, does
not quantify what is known about parameters.*

*many people initially think it does; an important job for instructors of intro Stat/Biostat courses

iS convincing those people that they are wrong.
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Bayesian inference

How does it work? Let’s take aim...

CONSIDER AN ARCHER SUOOTING AT A
TARGET. SUPPOSE SUE AlMS AT TUE
'‘BULLSEYE’ (A SINGLE POINT) AND WITS
WITUIN 10CM OF IT 95% OF TUE TIME.

Adapted from Gonick & Smith, The Cartoon Guide to Statistics
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http://www.amazon.com/Cartoon-Guide-Statistics-Larry-Gonick/dp/0062731025

Bayesian inference

How does it work? Let’s take aim...

YOU ARE (BRAVELY!) sSITTING BEHIND
THE TARGET, AND YOU DON'T KNOW
THE LOCATION OF THE BULLSEVYE.
THE ARCHER SHOOTS ONE ARROW...
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Bayesian inference

You don’t know the location exactly, but do have some ideas...

BAYESIAUS USE PROBABILITY TO DESCRIBE
DEGREES OF BELIEF IN PARAMETER VALUES;
'BELIEFS’ ARE POSITIVE, AND ADD UP TO ONE;
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Bayesian inference

You don’t know the location exactly, but do have some ideas...

... 50 YOU KNOW A THING OR TWO
ABOUT BULLSEYE LOCATIONS! BUT
WUAT sUouLD You TUINK WHEN ONE
MORE DATA POINT COMES ALONG?
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Bayesian inference

What to do when the data comes along?

HERE IT 15! USING A MODEL, WE CAN SAY LOW
LIKELY TUAT DATA POINT 1S5, UNDER ALL TUE
POSSIBLE TRUE BULLSEYE LOCATIONS;
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Bayesian inference

What to do when the data comes along?

BAYES THEOREM TELLS US UOW TO UPDATE
OUR BELIEFS ABOUT THE BULLSEYE LOCATION;
THEY'RE NOW PROP'L. TO PRIOR x LIKELIHOOD;
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Bayesian inference

Here's exactly the same idea, in practice;

e During the search for Air France 447, from 2009-2011, knowledge about the
black box location was described via probability —i.e. using Bayesian inference
e Eventually, the black box was found in the red area
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http://arxiv.org/abs/1405.4720

Bayesian inference

How to update knowledge, as data is obtained? We use;

e Prior distribution: what You know about parameter 0, excluding the

information in the data — denoted p(0)
e Likelihood: based on sampling & modeling assumptions, how (relatively)
likely the data y are if the truth is 8 — denoted p(y|6)

So how to get a posterior distribution: stating what You know about @,
combining the prior with the data — denoted p(0|Y)? Bayes Theorem used for
inference tells us to multiply;

p(Bly) o< p(yl@) x p(0)
Posterior o« Likelihood x Prior.

1.20



Bayesian inference

. and that's it! (essentially!)

e Given modeling assumptions & prior, process is automatic

e Keep adding data, and updating knowledge, as data becomes available...
knowledge will concentrate around true 0

e '‘You' denotes any rational person who happens to hold the specified prior
beliefs; given the observed data such a person should update these to the
stated posterior — and it's irrational to believe anything else
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Bayesian inference: ASE example

In an allele specific expression (ASE)
experiment, 2 strains (BY and RM)
are hybridized.

WV

)
Brewer S WILD WILD YEAST
JTEAUX CHAMPENOIS - PINC
Yeast o
Ml e

Super Food

Reduced Bitterness

Net Wt. 1 Ib. (454 9)
Vegetarian/Vegan

e /N denotes the total number of expression reads at a particular location in the

genome, Y denotes the number from BY
e We define 6 as the probability a read come from BY (not RM)
e How far 6 is from 0.5 determines how much allele specific expression there is
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202289/

Bayesian inference: ASE example

Sampling distribution, for several 0, and likelihood for several observations Y':
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Bayesian inference: ASE example

What does classical analysis do here?

| | | | | | | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Likelihood
0.10 0.20
| I
>
|
0.20
0.20

)ig
o
w
Likelihood
0.00 0.10
L1 L1 1 1
Kq»
11
o
o
Likelihood
0.00 0.10
L1 L1 1 1

0.00

0 0 0

e The point estimate (vertical line) is § = Y = Y/N, and an estimate of its

standard error is given by \/§(1 —0)/N.

e An approximate 95% confidence interval (“CI", shaded region) is given by
0 + 1.96xstandard error. This is an interval which, over many experiments,
covers the true 0 in (approximately) 95% of them

e The analysis doesn’'t (& can’'t) tell us if any given experiment's CI is in the
95% or the 5%
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Bayesian inference: ASE example

Here's one Bayesian analysis:

2 1 2 1 2 1 -

o — Prior Y=6 |3 Y=10 | @ Y=16

& % H— Likelihgsd g v o g v o

S o [ Postef S o 4 S o A

X x X

e N — o] AN — o] N —

: : :

£ o £« - £ o

o) © ©

£ o £ o £ o

- T T T T T — = T T T T T — = T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0 0 0

e This prior gives most support near 8 = 0.5 (mild allele-specific expression)
decreasing to 0 at § = 0,1 (expression impossible/guaranteed in BY)

e [ he prior's influence is to make results slightly more conservative than using
likelihood alone

e Formally, this is statistical induction: reasoning from specific data to general
population characteristics.

e Keen people: only relative size of likelihood & prior matters
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Bayesian inference: how to summarize a posterior?

Reporting a full posterior p(fly) is too complex for most work. One helpful
summary is a point estimate — our ‘best guess’ at 6, based on the posterior.

There are several definitions of ‘best’:

Posterior mean Posterior median Posterior mode
Center of mass of posterior | Halfway-point of posterior | High point of posterior
/
E[0]Y =y] = [0p(Oly) 0" [ o p(0ly) = 1/2 argmaxg p(6]y)

e For ~symmetric unimodal posteriors, all 3 will be ~similar. If in doubt, report
the median

e Frequentist analysis typically uses the maximum likelihood estimate (MLE)
that maximizes p(y|0); same as posterior mode, if we have a flat prior
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Bayesian inference: how to summarize a posterior?

To summarize posterior uncertainty, a natural analog of the standard error is the
posterior standard deviation, StdDev[0]Y = y] = \/f(e —E[6]y])?p(0]y)do

If the posterior is ~Normal, the interval < — Y=6
E[0)Y = y] + 1.96StdDev[0]Y = y] 2 Likelihood Posterior
contains approximately 95% of the & © 7
posterior's support — an approximate g
95% credible interval 5

o - —
More directly (and without relying on E}
Normality) can calculate central 95% ~ © - o E[6ly] = L.96xSD[A]
credible intervals as the 2.5%, 97.5% | — 25,50, 97.5% quanties
quantiles of the posterior. 0.0 0.2 0.4 0.6 0.8 1.0
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Bayesian inference: perhaps not so simple?

Bayesian inference can be made, er,
transparent;

Common sense reduced to computation

Pierre-Simon, marquis de Laplace (1749-1827) 2

Inventor of Bayesian inference




Bayesian inference: perhaps not so simple?

The same example; recall posterior « prior x likelihood;

B prior
w -] likelihood
& posterior

Probability density

I I I I I
0.2 0.4 0.6 0.8 1.0

Parameter

A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a
donkey, strongly believes he has seen a mule
Stephen Senn, Statistician & Bayesian Skeptic (mostly)
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Not so simple: where do priors come from?

An important day at statistician-school?

Perfectly
- Normal

o |
A - ) [ ] [ 4 ..-"1? 1 ] "# -
; .hl i = l f ¥

hot

|
- |

— e o S —-i o

UPDATED FOR THE 2157 CENTURY

i ":.':é;:

There's nothing wrong, dirty, unnatural or even unusual about making assump-
tions — carefully. Scientists & statisticians all make assumptions... even if they

don't like to talk about them.
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Not so simple: where do priors come from?

Priors come from all data external to the current Uncertal
ncertain Eliciting and

study, i.e. everything else. Judgements [P
Eliciting Experts’ Probabilities Expert Judgment

< St A Practical Guide
- M A Mover
- Lane M. Booker

‘Boiling down’ what subject-matter experts
know/think is known as eliciting a prior.

Like eliciting effect sizes for classical power
calculations, it's not easy (see right) but here are
some simple tips;

e Discuss parameters experts understand — e.g. code variables in familiar
units, make comparisons relative to an easily-understood reference, not with
age=height=IQ=0

e Avoid leading questions (just as in survey design)

e [ he ‘language’ of probability is unfamiliar; help users express their uncertainty

Kynn (2008, JRSSA) is a good review, describing many pitfalls.
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https://www.youtube.com/watch?feature=player_detailpage&v=G0ZZJXw4MTA#t=48
http://www.jstor.org/stable/30130739

Not so simple: where do priors come from?

Ideas to help experts ‘translate’ to the language of probability;

Subjective probability of effect

Impossible Increasingly likely
True mean effect of LUNA

A
Placebo substantially better) -2.5 N

Placebo moderately better) -2.0 I N

Placebo moderately better) -1.5 n

Placebo slightly better) -1.0

Placebo slightly better) -0.5

LUNA slightly better) +0.5

LUNA slightly better) +1.0

|75%‘

LUNA moderately better) +1.5 N

I
60% 659 70%
Probability of 3-year survival

LUNA moderately better) +2.0

I

I

1

I

|

I

|

I

|

I

|

I

|

I

|
[
L
N

(
(
(
(
(
(No benefit over placebo)
(
(
(
(
(LUNA substantially better) +2.5
(

LUNA substantially better) +3.0 Il\

Use 20x5% stickers (Johnson et al Normalize marks (Latthe et al 2005, J
2010, J Clin Epi) for prior on survival Obs Gync) for prior on pain effect of
when taking warfarin LUNA vs placebo

Typically these ‘coarse’ priors are smoothed. Providing the basic shape remains,
exactly how much you smooth is unlikely to be critical in practice.

1.32


http://www.sciencedirect.com/science/article/pii/S0895435609001759
http://www.sciencedirect.com/science/article/pii/S0895435609001759
http://onlinelibrary.wiley.com/doi/10.1111/j.1471-0528.2004.00304.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1471-0528.2004.00304.x/full

Not so simple: where do priors come from?

Arm B/ArmA

If the experts disagree? Try it both
ways; (Moatti, Clin Trl 2013)

4 — =—— Enthusiastic
= = Skeptical

Parmer et al (1996, JNCI) popular-
ized the definitions, they are now

Probability Density

common in trials work

log hazard ratio

Known as ‘Subjunctive Bayes': if one had this prior and the data, this is the
posterior one would have. If one had that prior... etc.

If the posteriors differ, what You believe based on the data depends, importantly,
on Your prior knowledge. To convince other people expect to have to convince
skeptics — and note that convincing [rational] skeptics is what science is all about.
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ctj.sagepub.com/content/early/2013/07/02/1740774513493528.abstract
http://jnci.oxfordjournals.org/content/88/22/1645.long

Not so simple: when don’t priors matter? (*)

. [] likelihood
When the data provide a ;,rio'r#;
lot more information than o 4 P

- - posterior #2

the prior, this happens; (re-
call the stained glass color-
scheme)

Probability Density

0.0 0.2 0.4 0.6 0.8 1.0

Parameter

These priors (& many more) are dominated by the likelihood, and they give very
similar posteriors — i.e. everyone agrees. (Phew!)
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Not so simple: when don’t priors matter? (*)

A related idea; try using very flat priors to represent ignorance;

Probability Density

(QV)
-

o
—

0

[] likelihood
—— prior
posterior

Parameter
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Not so simple: when don’t priors matter? (*)

e Flat priors do NO'T actually represent ignorance! Most of their support is for
very extreme parameter values, and those can usually be ruled out with very
rudimentary knowledge

e However, for parameters in ‘famous’ regression models, using flat priors to
represent ignorance actually works okay. More generally, ‘Objective Bayes’
methods work to derive priors that are minimally-informative, though this is
hard to define

e For many other situations, using flat priors works really badly — so be careful!
(And also recall that prior elicitation is a useful exercise)
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Not so simple: when don’t priors matter? (*)

Back to having very informative data — now zoomed in;

The likelihood alone (yellow) gives the
classic 95% confidence interval. But, to a
good approximation, it goes from 2.5% to
97.5% points of Bayesian posterior (red)
— a 95% credible interval.

[] likelihood
__— prior
—— posterior

Probability Density

With large samples®, sane frequentist

— L = confidence intervals and sane Bayesian

B-1.96xstderr B [+1.96 xstderr . . ] ] .
Parameter credible intervals are essentially identical.

With large samples*, Bayesian interpretations of 95% ClIs are actually okay, i.e.
saying we have ~95% posterior belief that the true 3 lies within that range

* and some regularity conditions
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Not so simple: when don’t priors matter? (*)

We can exploit this idea to be ‘semi-Bayesian’; multiply what the likelihood-based
interval says by Your prior.

One way to do this;

e [ake point-estimate B and corresponding standard error stderr, calculate
precision 1/stderr?

e Elicit prior mean (g and prior standard deviation o; calculate prior precision
1/02

e ‘Posterior’ precision = 1/stderr? + 1/02 (which gives overall uncertainty

e ‘Posterior’ mean = precision-weighted mean of 8 and Bg

Note: This is a (very) quick-and-dirty approach; we'll see much more precise
approaches in later sessions.
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Not so simple: when don’t priors matter? (*)

—— prior
—o— estimate & conf int
—— approx posterior

Let's try it, for a prior
strongly supporting small ef-
fects, and with data from an
imprecise study;

1.0 1.5

Probability Density

0.5
I

‘“Textbook' classical analysis
says ‘reject’ (p < 0.05,
woohoo!) | |

|
-1 . 0 | 1
3—1.96 x stderr

N

0.0

|
2 A | 3
B+1.96 x stderr

o> — | C

Paramet

D

r

Compared to the CI, the posterior is ‘shrunk’ toward zero; posterior says we’'re
sure true B is very small (& so hard to replicate) & we're unsure of its sign. So,
hold the front page
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Not so simple: when don’t priors matter? (*)

Hold the front page... does that sound
familiar?

e Problems with the ‘aggressive dissemina-
tion of noise’ are a current hot topic...

e In previous example, approximate Bayes
helps stop over-hyping — ‘full Bayes' is
better still, when you can do it

e Better classical analysis also helps — it can
note e.g. that study tells us little about
B that’s useful, not just p < 0.05

e NoO statistical approach will stop selective

(& THE NEW YORKER

ANNALS OF SAENCE :

THE TRUTH WEARS OFF | * , lF "

Is there something wrong with the scientific method? |
BY JONAH LEHRER v } v

n September 18, 2007, a few dozen
neuroscientists, psychiatrists, and
drug-company executives gathered

in a hotel conference room in Brussels to
hear some startling news. It had to do with a

] Many results that are rigorously
class of drugs known as atypical or second- proved and accepted start shrinking in

generation antipsychotics, which came on later studies.

reporting, or fraud. Problems of

biased sampling & messy data can be fixed (a bit) but only using background

knowledge & assumptions
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http://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off
http://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off
http://andrewgelman.com/2014/04/04/notorious-n-h-s-t-presents-mo-p-values-mo-problems/
http://andrewgelman.com/2014/04/04/notorious-n-h-s-t-presents-mo-p-values-mo-problems/

Where is Bayes commonly used? (*)

Allowing approximate Bayes, one answer is ‘almost any analysis’. More-explicitly
Bayesian arguments are often seen in;

Hierarchical modeling Complex models
i
Prior for population
mean and SD
o Y
@ -
= Population H
T mean and SD ;
®©; :
! — :
S _— — i
o — e i
%f S, and Sgof S, and Sg of S, and Sg of ;
m individual 1 individual2 | | 7 individual N |
P I I U I I U
sssss
535“ T s 02 o
© =] ot I_ o
3 [
i
insulin Gluco: o s —I —I _|_|_| L
data of |nd|\ndual 2 """"""" I e S P | T 0 e E
AAAAAAAA —

One expert caIIs the classm frequentist ...for e.g. messy data, measurement
version a ‘“statistical no-man’s land” error, multiple sources of data; fitting
them is possible under Bayesian ap-

proaches, but perhaps still not easy
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Are all classical methods Bayesian? (*)

We've seen that, for popular regression methods, with large n, Bayesian and
frequentist ideas often don’'t disagree much. This is (provably!) true more
broadly, though for some situations statisticians haven’'t yet figured out the
details. Some ‘fancy’ frequentist methods that can be viewed as Bayesian are;

e Fisher’s exact test — its p-value is the ‘tail area’ of the posterior under a rather
conservative prior (Altham 1969)

e Conditional logistic regression (Severini 1999, Rice 2004)

e Robust standard errors — like Bayesian analysis of a ‘trend’, at least for linear
regression (Szpiro et al 2010)

And some that can't;

e Many high-dimensional problems (shrinkage, machine-learning)
e Hypothesis tests (‘Jeffrey’s paradox’) but NOT significance tests (Rice 2010)

And while e.g. hierarchical modeling & multiple imputation are easier to justify
in Bayesian terms, they aren’t unfrequentist.
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http://www.jstor.org/stable/2984209
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A9n34.pdf
http://www.tandfonline.com/doi/abs/10.1198/016214504000000511
http://www.e-publications.org/ims/submission/index.php/AOAS/user/submissionFile/5028?confirm=b5185990
http://faculty.washington.edu/kenrice/testingrev2a.pdf

Fight! Fight! Fight! (*)

Two old-timers slugging out the Bayes vs Frequentist battle;

The only good statistics
is Bayesian Statistics

Dennis Lindley (1923-2013)
writing about the future in 1975

If [Bayesians] would only do as
[Bayes] did and publish posthumously
we should all be saved a lot of trouble

Maurice Kendall (1907—1983)
JRSSA 1968

e For many years — until recently — Bayesian ideas in statistics® were widely

dismissed, often without much thought
e Advocates of Bayes had to fight hard to be heard, leading to an ‘us against

the world’ mentality — & predictable backlash
e [oday, debates tend be less acrimonious, and more tolerant

* and sometimes the statisticians who researched and used them
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http://www.jstor.org.offcampus.lib.washington.edu/stable/1426315
http://www.jstor.org.offcampus.lib.washington.edu/stable/2343841

Fight! Fight! Fight! (*)

But writers of dramatic/romantic stories about Bayesian “heresy” [NYT] tend (I
think) to over-egg the actual differences;

the theory ,gﬁ o - the signal
<= that would | THE CuLT and the noise
sk A% W OF STATISTICAL
how baye cracked -SI—G—N ain
I the enigna code, | e SN WHY S0 mang
hunted down russian Gosts Us [obe; predictions fail -

-
Submar-ines & emerged Justice, ufdf_:je:‘: bUt some don t

triumphant from twoj&‘ B
centuries of controversy

e Among those who actually understand both, it's hard to find people who
totally dismiss either one

e Keen people: Vic Barnett's Comparative Statistical Inference provides the
most even-handed exposition I know

PROVING HISTORY

BAYES'S THEQREM and the
(ueest for the HISTORICAL JESUS

Sl:phenT.ZiIialkaﬂ nate SiIUEI'

Deirdre N. McCl
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http://www.nytimes.com/2006/12/12/science/12prof.html?pagewanted=all
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471976431.html

Fight! Fight! Fight! (*)

XKCD on Frequentists vs Bayesians;

Here, the fun relies
on setting up a straw-
man, p-values are not
the only tools used in
a Sskillful frequentist
analysis.

Note: Statistics can be hard — so it's not difficult to find examples where it's

DID THE SUN JUST EXPLCOE?

(ITS NIGHT, 50 WERE NOT SURE.) FREGUVENTIST STERSTICAN: BAYESIAN STRTISTIOAN:
THIS NETRING DETECTOR, MEFSURES THE PROGARBLTY OF THIS RESLLT
WHETHER, THE SUM HAS GONE NOVR. HAFPENING BY CHANCE 15 31‘=ﬂm;.-_ ‘Er!;l_:‘.r*itl,l"?-_ﬁ?

BOTH COME UP Six, IT LES TO US
OTHERWISE, TI'TELLE'I'FETELH
LETS TRY.
JEECTOR! HAS THE
&;wrjmfﬂ.t:m?

2

( THEN, TROWS TRIO DCE. IF THEY

OMCE p<0.05, T CONCLUDE
THAT THE SUN HAS EXPLODED

ia

!

@,

done badly, under any system.
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https://xkcd.com/1132/

What did you miss out?

__Tets in Satistial Science
Bayesian
- DﬂtﬂYAﬂﬂIVSiS ] Peter D. Hoff
Recall, there's a ot more to Bayesian S AT AFirst Courseiin

statistics than I've talked about...

Hol'S. it T Models

] i i Bayesian Statistical
O i | | Methods
| | | |l o .
i O | | i i o ; Data Analysis
o e b e o b o Using Regression and
ool | o | | | | = & .
: = I Multilevel/Hierarchical

o crnman cRC ANDREW GELMAN
JENNIFER HILL

These books are all recommended — the course site will feature more resources.
We will focus on Bayesian approaches to ;

e Regression-based modeling

e Testing

e Learning about multiple parameters (testing)

e Combining data sources (imputation, meta-analysis)

— but the general principles apply very broadly.
1.46



Summary

Bayesian statistics:

e Is useful in many settings, and intuitive
e IS often not very different in practice from frequentist statistics; it is often

helpful to think about analyses from both Bayesian and non-Bayesian points
of view

e IS not reserved for hard-core mathematicians, or computer scientists, or
philosophers. Practical uses abound.

Wikipedia's Bayes pages aren’'t great. Instead, start with the linked texts, or
these;

e Scholarpedia entry on Bayesian statistics
e Peter Hoff's book on Bayesian methods

e [ he Handbook of Probability's chapter on Bayesian statistics
e Ken's website
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http://www.scholarpedia.org/article/Bayesian_statistics
https://www.stat.washington.edu/~pdhoff/book.php
web.archive.org/web/http://www.sagepub.com/upm-data/18550_Chapter6.pdf
http://faculty.washington.edu/kenrice/
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