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Overview

We’ll cover only the key points from a very large subject...

• What is Bayes’ Rule, a.k.a. Bayes’ Theorem?

• What is Bayesian inference?

• Where can Bayesian inference be helpful?

• How does it differ from frequentist inference?

Note: other literature contains many pro- and anti-

Bayesian polemics, many of which are ill-informed and

unhelpful. We will try not to rant, and aim to be accurate.

Further Note: There will, unavoidably, be some discussion of epistemology, i.e.

philosophy concerned with the nature and scope of knowledge. But...
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Overview

Using a spade for some jobs

and shovel for others does

not require you to sign up

to a lifetime of using only

Spadian or Shovelist philos-

ophy, or to believing that

only spades or only shovels

represent the One True Path

to garden neatness.

There are different ways of tackling statistical problems, too.
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Bayes’ Theorem

Before we get to Bayesian statistics∗, Bayes’ Theorem is a result from probability.
Probability is familiar to most people through games of chance;

* Sorry! Necessary math ahead!
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Bayes’ Theorem

Bayes’ Theorem describes conditional prob-

abilities: for events A and B, P[A|B ] denotes

the probability that A happens given that B

happens. In this example;

• P[A|B ] = 1/10
3/10 = 1/3

• P[B|A ] = 1/10
5/10 = 1/5

Bayes’ Theorem states how P[A|B ] and

P[B|A ] are related. Here it is:

P[A|B ] =
P[A and B ]

P[B ]
= P[B|A ]

P[A ]

P[B ]
, ...so here, 1/3 = 1/5×

5/10

3/10
(X)

In words: the conditional probability of A given B is the conditional probability
of B given A scaled by the relative probability of A compared to B.
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Bayes’ Theorem

Why does it matter? If 1% of a

population have a genetic variant,

for a screening test with 80%

sensitivity and 95% specificity;

P[ Test -ve |no variant ] = 95%

P[ Test +ve | variant ] = 80%
P[ Test +ve]

P[ variant ]
= 5.75

P[ variant |Test +ve ] ≈ 14%

... i.e. most positive results are actually false alarms.

Mixing up P[ Test +ve|variant ] and P[ variant|Test +ve ] is a classic case of the
Prosecutor’s Fallacy; a small probability of evidence given innocence need NOT
mean a small probability of innocence given evidence.
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Bayes’ Theorem: continuous version

The ‘language’ of probability is much richer than just Yes/No events;

Categorical (probabilities) Continuous (density function)
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Probability of having at least one copy

of the ‘a’ allele is 0.32+0.04=0.36, i.e.

36%.

Probability of sets (e.g. a

randomly-selected adult SBP>170

or <110mmHg) is given by the

corresponding area.
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Bayes’ Theorem: continuous version

There are ‘rules’ of probability. Denoting the density at outcome y as p(y);

• The total probability of all possible outcomes is 1 - so densities integrate to
one; ∫

Y
p(y)dy = 1,

where Y denotes the set of all possible outcomes
• For any a < b in Y,

P[Y ∈ (a, b) ] =
∫ b

a
p(y)dy

• For general events;

P[Y ∈ Y0 ] =
∫
Y0

p(y)dy,

where Y0 is any subset of the possible outcomes Y
For discrete events, replace integration by addition over possible outcomes.
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Bayes’ Theorem: continuous version

The same ideas for two random variables, where the density is a surface;
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... where the total ‘volume’ is 1, i.e.
∫
X ,Y p(x, y)dxdy = 1.
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Bayes’ Theorem: continuous version

To get the probability of outcomes in a region we again integrate;
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Bayes’ Theorem: continuous version

For continuous variables (say systolic and diastolic blood pressure) think of
conditional densities as ‘slices’ through the distribution. Formally:

p(x|y = y0) = p(x, y0)/
∫
X
p(x, y0)dx

p(y|x = x0) = p(x0, y)/
∫
Y
p(x0, y)dy,

and we often write these as just p(x|y), p(y|x).

Also, the marginal densities (shaded curves) are

given by

p(x) =
∫
Y
p(x, y)dy

p(y) =
∫
X
p(x, y)dx.
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Bayes’ Theorem: continuous version

Bayes’ theorem connects different conditional distributions –

Bayes’ Theorem says the relationship between

conditional densities is;

p(x|y) = p(y|x)
p(x)

p(y)
.

Because we know p(x|y) must integrate to one,

we can also write this as

p(x|y) ∝ p(y|x)p(x).

Bayes’ Theorem states that the conditional

density is proportional to the marginal scaled by

the other conditional density.
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Bayesian statistics

So far, nothing’s controversial; Bayes’ Theorem is a math result about the
‘language’ of probability, that can be used in any analysis describing random
variables, i.e. any data analysis.

Q. So why all the fuss?
A. Bayesian statistics uses more than just Bayes’ Theorem

In addition to describing random variables, Bayesian statistics uses the

‘language’ of probability to describe what is known about unknown parameters.

Note: Frequentist statistics , e.g. using p-values & confidence intervals, does
not quantify what is known about parameters.∗

*many people initially think it does; an important job for instructors of intro Stat/Biostat courses

is convincing those people that they are wrong.
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Bayesian inference

How does it work? Let’s take aim...

Adapted from Gonick & Smith, The Cartoon Guide to Statistics
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http://www.amazon.com/Cartoon-Guide-Statistics-Larry-Gonick/dp/0062731025


Bayesian inference

How does it work? Let’s take aim...
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Bayesian inference

You don’t know the location exactly, but do have some ideas...

1.15



Bayesian inference

You don’t know the location exactly, but do have some ideas...
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Bayesian inference

What to do when the data comes along?
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Bayesian inference

What to do when the data comes along?
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Bayesian inference

Here’s exactly the same idea, in practice;

• During the search for Air France 447, from 2009-2011, knowledge about the
black box location was described via probability – i.e. using Bayesian inference
• Eventually, the black box was found in the red area
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Bayesian inference

How to update knowledge, as data is obtained? We use;

• Prior distribution: what You know about parameter θθθ, excluding the

information in the data – denoted p(θθθ)

• Likelihood: based on sampling & modeling assumptions, how (relatively)

likely the data y are if the truth is θθθ – denoted p(y|θθθ)

So how to get a posterior distribution: stating what You know about θθθ,

combining the prior with the data – denoted p(θθθ|Y)? Bayes Theorem used for

inference tells us to multiply;

p(θθθ|y) ∝ p(y|θθθ) × p(θθθ)

Posterior ∝ Likelihood × Prior.
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Bayesian inference

... and that’s it! (essentially!)

• Given modeling assumptions & prior, process is automatic

• Keep adding data, and updating knowledge, as data becomes available...

knowledge will concentrate around true θθθ

• ‘You’ denotes any rational person who happens to hold the specified prior

beliefs; given the observed data such a person should update these to the

stated posterior – and it’s irrational to believe anything else
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Bayesian inference: ASE example

In an allele specific expression (ASE)

experiment, 2 strains (BY and RM)

are hybridized.

• N denotes the total number of expression reads at a particular location in the

genome, Y denotes the number from BY

• We define θ as the probability a read come from BY (not RM)

• How far θ is from 0.5 determines how much allele specific expression there is
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Bayesian inference: ASE example

Sampling distribution, for several θ, and likelihood for several observations Y :
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These are two ways of looking at p(y|θ) – varying y and varying θ.
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Bayesian inference: ASE example

What does classical analysis do here?
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• The point estimate (vertical line) is θ̂ = Ȳ = Y/N , and an estimate of its

standard error is given by
√
θ̂(1− θ̂)/N .

• An approximate 95% confidence interval (“CI”, shaded region) is given by
θ̂ ± 1.96×standard error. This is an interval which, over many experiments,
covers the true θ in (approximately) 95% of them
• The analysis doesn’t (& can’t) tell us if any given experiment’s CI is in the

95% or the 5%
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Bayesian inference: ASE example

Here’s one Bayesian analysis:
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• This prior gives most support near θ = 0.5 (mild allele-specific expression)
decreasing to 0 at θ = 0,1 (expression impossible/guaranteed in BY)
• The prior’s influence is to make results slightly more conservative than using

likelihood alone
• Formally, this is statistical induction: reasoning from specific data to general

population characteristics.
• Keen people: only relative size of likelihood & prior matters
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Bayesian inference: how to summarize a posterior?

Reporting a full posterior p(θ|y) is too complex for most work. One helpful

summary is a point estimate – our ‘best guess’ at θ, based on the posterior.

There are several definitions of ‘best’:

Posterior mean Posterior median Posterior mode
Center of mass of posterior Halfway-point of posterior High point of posterior

E[ θ|Y = y ] =
∫
θp(θ|y) θ′ :

∫ θ′
−∞ p(θ|y) = 1/2 argmaxθ p(θ|y)

• For ≈symmetric unimodal posteriors, all 3 will be ≈similar. If in doubt, report

the median

• Frequentist analysis typically uses the maximum likelihood estimate (MLE)

that maximizes p(y|θ); same as posterior mode, if we have a flat prior
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Bayesian inference: how to summarize a posterior?

To summarize posterior uncertainty, a natural analog of the standard error is the
posterior standard deviation, StdDev[ θ|Y = y ] =

√∫
(θ − E[ θ|y ])2p(θ|y)dθ

If the posterior is ≈Normal, the interval

E[ θ|Y = y ] ± 1.96StdDev[ θ|Y = y ]

contains approximately 95% of the

posterior’s support – an approximate

95% credible interval

More directly (and without relying on

Normality) can calculate central 95%

credible intervals as the 2.5%, 97.5%

quantiles of the posterior. 0.0 0.2 0.4 0.6 0.8 1.0
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E[θ|y] ± 1.96xSD[θ|y]
2.5, 50, 97.5% quantiles
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Bayesian inference: perhaps not so simple?

Bayesian inference can be made, er,

transparent;

Common sense reduced to computation

Pierre-Simon, marquis de Laplace (1749–1827)
Inventor of Bayesian inference
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Bayesian inference: perhaps not so simple?

The same example; recall posterior ∝ prior × likelihood;
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A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a
donkey, strongly believes he has seen a mule

Stephen Senn, Statistician & Bayesian Skeptic (mostly)
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Not so simple: where do priors come from?

An important day at statistician-school?

There’s nothing wrong, dirty, unnatural or even unusual about making assump-
tions – carefully. Scientists & statisticians all make assumptions... even if they
don’t like to talk about them.
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Not so simple: where do priors come from?

Priors come from all data external to the current

study, i.e. everything else.

‘Boiling down’ what subject-matter experts

know/think is known as eliciting a prior.

Like eliciting effect sizes for classical power

calculations, it’s not easy (see right) but here are

some simple tips;

• Discuss parameters experts understand – e.g. code variables in familiar
units, make comparisons relative to an easily-understood reference, not with
age=height=IQ=0
• Avoid leading questions (just as in survey design)
• The ‘language’ of probability is unfamiliar; help users express their uncertainty

Kynn (2008, JRSSA) is a good review, describing many pitfalls.
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Not so simple: where do priors come from?

Ideas to help experts ‘translate’ to the language of probability;

Use 20×5% stickers (Johnson et al

2010, J Clin Epi) for prior on survival

when taking warfarin

Normalize marks (Latthe et al 2005, J

Obs Gync) for prior on pain effect of

LUNA vs placebo

Typically these ‘coarse’ priors are smoothed. Providing the basic shape remains,
exactly how much you smooth is unlikely to be critical in practice.
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Not so simple: where do priors come from?

If the experts disagree? Try it both

ways; (Moatti, Clin Trl 2013)

Parmer et al (1996, JNCI) popular-

ized the definitions, they are now

common in trials work

Known as ‘Subjunctive Bayes’; if one had this prior and the data, this is the
posterior one would have. If one had that prior... etc.

If the posteriors differ, what You believe based on the data depends, importantly,
on Your prior knowledge. To convince other people expect to have to convince
skeptics – and note that convincing [rational] skeptics is what science is all about.
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Not so simple: when don’t priors matter? (*)

When the data provide a

lot more information than

the prior, this happens; (re-

call the stained glass color-

scheme)
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These priors (& many more) are dominated by the likelihood, and they give very
similar posteriors – i.e. everyone agrees. (Phew!)
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Not so simple: when don’t priors matter? (*)

A related idea; try using very flat priors to represent ignorance;
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Not so simple: when don’t priors matter? (*)

• Flat priors do NOT actually represent ignorance! Most of their support is for

very extreme parameter values, and those can usually be ruled out with very

rudimentary knowledge

• However, for parameters in ‘famous’ regression models, using flat priors to

represent ignorance actually works okay. More generally, ‘Objective Bayes’

methods work to derive priors that are minimally-informative, though this is

hard to define

• For many other situations, using flat priors works really badly – so be careful!

(And also recall that prior elicitation is a useful exercise)
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Not so simple: when don’t priors matter? (*)

Back to having very informative data – now zoomed in;
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β̂ − 1.96 × stderr β̂ + 1.96 × stderrβ̂
Parameter

The likelihood alone (yellow) gives the

classic 95% confidence interval. But, to a

good approximation, it goes from 2.5% to

97.5% points of Bayesian posterior (red)

– a 95% credible interval.

With large samples∗, sane frequentist

confidence intervals and sane Bayesian

credible intervals are essentially identical.

With large samples∗, Bayesian interpretations of 95% CIs are actually okay, i.e.
saying we have ≈95% posterior belief that the true β lies within that range

* and some regularity conditions
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Not so simple: when don’t priors matter? (*)

We can exploit this idea to be ‘semi-Bayesian’; multiply what the likelihood-based
interval says by Your prior.

One way to do this;

• Take point-estimate β̂ and corresponding standard error stderr, calculate
precision 1/stderr2

• Elicit prior mean β0 and prior standard deviation σ; calculate prior precision
1/σ2

• ‘Posterior’ precision = 1/stderr2 + 1/σ2 (which gives overall uncertainty
• ‘Posterior’ mean = precision-weighted mean of β̂ and β0

Note: This is a (very) quick-and-dirty approach; we’ll see much more precise
approaches in later sessions.
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Not so simple: when don’t priors matter? (*)

Let’s try it, for a prior

strongly supporting small ef-

fects, and with data from an

imprecise study;

‘Textbook’ classical analysis

says ‘reject’ (p < 0.05,

woohoo!)
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estimate & conf int
approx posterior

● estimate & conf int

Compared to the CI, the posterior is ‘shrunk’ toward zero; posterior says we’re
sure true β is very small (& so hard to replicate) & we’re unsure of its sign. So,
hold the front page

1.39



Not so simple: when don’t priors matter? (*)

Hold the front page... does that sound

familiar?

• Problems with the ‘aggressive dissemina-

tion of noise’ are a current hot topic...

• In previous example, approximate Bayes

helps stop over-hyping – ‘full Bayes’ is

better still, when you can do it

• Better classical analysis also helps – it can

note e.g. that study tells us little about

β that’s useful, not just p < 0.05

• No statistical approach will stop selective reporting, or fraud. Problems of

biased sampling & messy data can be fixed (a bit) but only using background

knowledge & assumptions
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Where is Bayes commonly used? (*)

Allowing approximate Bayes, one answer is ‘almost any analysis’. More-explicitly

Bayesian arguments are often seen in;

Hierarchical modeling Complex models

One expert calls the classic frequentist

version a “statistical no-man’s land”

...for e.g. messy data, measurement

error, multiple sources of data; fitting

them is possible under Bayesian ap-

proaches, but perhaps still not easy
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Are all classical methods Bayesian? (*)

We’ve seen that, for popular regression methods, with large n, Bayesian and
frequentist ideas often don’t disagree much. This is (provably!) true more
broadly, though for some situations statisticians haven’t yet figured out the
details. Some ‘fancy’ frequentist methods that can be viewed as Bayesian are;

• Fisher’s exact test – its p-value is the ‘tail area’ of the posterior under a rather
conservative prior (Altham 1969)
• Conditional logistic regression (Severini 1999, Rice 2004)
• Robust standard errors – like Bayesian analysis of a ‘trend’, at least for linear

regression (Szpiro et al 2010)

And some that can’t;

• Many high-dimensional problems (shrinkage, machine-learning)
• Hypothesis tests (‘Jeffrey’s paradox’) but NOT significance tests (Rice 2010)

And while e.g. hierarchical modeling & multiple imputation are easier to justify
in Bayesian terms, they aren’t unfrequentist.
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Fight! Fight! Fight! (*)

Two old-timers slugging out the Bayes vs Frequentist battle;

The only good statistics

is Bayesian Statistics

If [Bayesians] would only do as

[Bayes] did and publish posthumously

we should all be saved a lot of trouble

Dennis Lindley (1923–2013) Maurice Kendall (1907–1983)
writing about the future in 1975 JRSSA 1968

• For many years – until recently – Bayesian ideas in statistics∗ were widely
dismissed, often without much thought
• Advocates of Bayes had to fight hard to be heard, leading to an ‘us against

the world’ mentality – & predictable backlash
• Today, debates tend be less acrimonious, and more tolerant

* and sometimes the statisticians who researched and used them
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Fight! Fight! Fight! (*)

But writers of dramatic/romantic stories about Bayesian “heresy” [NYT] tend (I
think) to over-egg the actual differences;

• Among those who actually understand both, it’s hard to find people who
totally dismiss either one
• Keen people: Vic Barnett’s Comparative Statistical Inference provides the

most even-handed exposition I know
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http://www.nytimes.com/2006/12/12/science/12prof.html?pagewanted=all
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Fight! Fight! Fight! (*)

XKCD on Frequentists vs Bayesians;

Here, the fun relies

on setting up a straw-

man; p-values are not

the only tools used in

a skillful frequentist

analysis.

Note: Statistics can be hard – so it’s not difficult to find examples where it’s
done badly, under any system.
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What did you miss out?

Recall, there’s a lot more to Bayesian

statistics than I’ve talked about...

These books are all recommended – the course site will feature more resources.
We will focus on Bayesian approaches to ;

• Regression-based modeling
• Testing
• Learning about multiple parameters (testing)
• Combining data sources (imputation, meta-analysis)

– but the general principles apply very broadly.
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Summary

Bayesian statistics:

• Is useful in many settings, and intuitive
• Is often not very different in practice from frequentist statistics; it is often

helpful to think about analyses from both Bayesian and non-Bayesian points
of view
• Is not reserved for hard-core mathematicians, or computer scientists, or

philosophers. Practical uses abound.

Wikipedia’s Bayes pages aren’t great. Instead, start with the linked texts, or
these;

• Scholarpedia entry on Bayesian statistics
• Peter Hoff’s book on Bayesian methods
• The Handbook of Probability’s chapter on Bayesian statistics
• Ken’s website
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http://www.scholarpedia.org/article/Bayesian_statistics
https://www.stat.washington.edu/~pdhoff/book.php
web.archive.org/web/http://www.sagepub.com/upm-data/18550_Chapter6.pdf
http://faculty.washington.edu/kenrice/
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