2017 SISG Module 1: Bayesian Statistics for Genetics
 Lecture 7: Generalized Linear Modeling

Jon Wakefield

Departments of Statistics and Biostatistics
University of Washington

Outline

Introduction and Motivating Examples
Generalized Linear Models
Bayes Linear Model Bayes Logistic Regression

Generalized Linear Mixed Models
Approximate Bayes Inference
The Approximation
Hierarchical Modeling of Allele-Specific Expression Data Motivation
Modeling
Conclusions

Introduction

In this lecture we will discuss Bayesian modeling in the context of Generalized Linear Models (GLMs).

This discussion will include the addition of random effects, i.e. the class of Generalized Linear Mixed Models (GLMMs).

Estimation via the quick INLA technique will be demonstrated, along with its R implementation.

An approximation technique that is useful (in particular) in the context of Genome Wide Association Studies (GWAS) (in which the number of tests is large) will also be introduced.

A complex mixture model for ASE will be described, to illustrate some of the flexibility of Bayes modeling.

The accompanying R code allows the analyses presented here to be replicated.

Motivating Example: Logistic Regression

We consider case-control data for the disease Leber Hereditary Optic Neuropathy (LHON) disease with genotype data for marker rs6767450:

	CC	CT	TT	Total
	$x=0$	$x=1$	$x=2$	
Cases	6	8	75	89
Controls	10	66	163	239
Total	16	74	238	328

Let $x=0,1,2$ represent the number of T alleles, and $p(x)$ the probability of being a case, given x copies of the T allele.

Motivating Example: Logistic Regression

For such case-control data one may fit the multiplicative odds model:

$$
\frac{p(x)}{1-p(x)}=\exp (\alpha) \times \exp (\theta x)
$$

with a binomial likelihood.

Interpretation:

- $\exp (\alpha)$ is of little interest given the case-control sampling.
- $\exp (\theta)$ is the odds ratio describing the multiplicative change in risk for one T allele versus zero T alleles.
- $\exp (2 \theta)$ is the odds ratio describing the multiplicative change in risk for two T alleles versus zero T alleles.
- Odds ratios approximate the relative risk for a rare disease.

A Bayesian analysis adds a prior on α and θ.

Motivating Example: FTO Data Revisited

Recall

- $Y=$ weight
- $x_{g}=$ fto heterozygote $\in\{0,1\}$
- $x_{\mathrm{a}}=$ age in weeks $\in\{1,2,3,4,5\}$

We will examine the fit of the model

$$
\mathrm{E}\left[Y \mid x_{\mathrm{g}}, x_{\mathrm{a}}\right]=\beta_{0}+\beta_{\mathrm{g}} x_{g}+\beta_{\mathrm{a}} x_{a}+\beta_{\mathrm{int}} x_{\mathrm{g}} x_{\mathrm{a}},
$$

with independent normal errors, and compare with a Bayesian analysis.

Motivating Example: RNA Seq with Replicates

- We report an experiment carried out in a previous collaboration, see Connelly et al. (2014) for further details.
- Start with two haploid yeast strains (individuals).
- From these we obtain RNA-Seq data, where we isolate RNA from the two individuals, fragment and sequence it using next-generation sequencing, and map the sequencing reads back to the genome to generate RNA levels in the form of counts of the number of sequencing reads mapping at each gene.
- Also mate the two haploid yeast strains together to form a diploid hybrid. We again isolate RNA, fragment, and sequence it.
- Then take advantage of polymorphisms between the two strains in order to map reads to either of the two haploid individuals, giving us counts for the number of reads mapping to either one of the parental genomes in the diploid hybrid for each gene.

Motivating Example: RNA Seq with Replicates

- We are interested in two questions from this data. First, we want to look for evidence of trans effects at each gene; in biological terms, this means that polymorphisms located far from the gene are responsible for differences in RNA levels.
- To detect this, look for genes where the difference between RNA levels in the haploids differs from the difference between RNA levels for the two parental strains in the diploid.
- The question we concentrate on looking for cis effects, these are polymorphisms near the gene itself are responsible for differences in RNA levels.
- We can detect cis effects as a difference in the count of reads mapping to each of the parental strains in the diploid at a gene, is the probability of arising from the two parents, 0.5 ?

Motivating Example: RNA Seq Data, Statistical Model

There are two replicates and so for each of N genes we obtain two sets of counts.

For the diploid hybrid let :

- $Y_{i j}$ be the number of A alleles for gene i and replicate j, and
- $N_{i j}$ is the total number of counts, so that $N_{i j}-Y_{i j}$ is the number of T alleles $j=1,2$.

Motivating Example: RNA Seq Data, Statistical Model

We fit a random effects logistic regression model starting with first stage:

$$
Y_{i j} \mid N_{i j}, p_{i j} \sim \operatorname{binomial}\left(N_{i j}, p_{i j}\right)
$$

so that $p_{i j}$ is the probability of seeing an A read for gene i and replicate j.

At the second stage:

$$
\frac{p_{i j}}{1-p_{i j}}=\exp \left(\theta_{i}+\epsilon_{i j}\right)
$$

where $\epsilon_{i j} \sim \operatorname{normal}\left(0, \sigma^{2}\right)$ represent random effects that allow for excess-binomial variation.

In the model θ_{i} is a parameter of interest - if a (say) 95% posterior interval estimate contains 0 then we have evidence of cis effects.

Generalized Linear Models

- Generalized Linear Models (GLMs) provide a very useful extension to the linear model class.
- GLMs have three elements:

1. The responses follow an exponential family.
2. The mean model is linear in the covariates on some scale.
3. A link function relates the mean of the data to the covariates.

- In a GLM the response y_{i} are independently distributed and follow an exponential family ${ }^{1}, i=1, \ldots, n$.
- Examples: Normal, Poisson, binomial.

[^0]
Generalized Linear Models

- The link function $g(\cdot)$ provides the connection between the mean $\mu=\mathrm{E}[Y]$ and the linear predictor $\boldsymbol{x} \boldsymbol{\beta}$, via

$$
g(\mu)=\boldsymbol{x} \boldsymbol{\beta}
$$

where \boldsymbol{x} is a vector of explanatory variables and $\boldsymbol{\beta}$ is a vector of regression parameters.

- For normal data, the usual link is the identity

$$
g(\mu)=\mu=\boldsymbol{x} \boldsymbol{\beta}
$$

- For binary data, a common link is the logistic

$$
g(\mu)=\log \left(\frac{\mu}{1-\mu}\right)=\boldsymbol{x} \boldsymbol{\beta}
$$

- For Poisson data, a common link is the log

$$
g(\mu)=\log (\mu)=\boldsymbol{x} \boldsymbol{\beta}
$$

Bayesian Modeling with GLMs

- For a generic GLM, with regression parameters $\boldsymbol{\beta}$ and a scale parameter α, the posterior is

$$
p(\boldsymbol{\beta}, \alpha \mid \boldsymbol{y}) \propto p(\boldsymbol{y} \mid \boldsymbol{\beta}, \alpha) \times p(\boldsymbol{\beta}, \alpha) .
$$

- An immediate question is: How to specify a prior distribution $p(\boldsymbol{\beta}, \alpha)$?
- How to perform the computations required to summarize the posterior distribution (including the calculation of Bayes factors)?

Bayesian Computation

Various approaches to computation are available:

- Conjugate analysis - the prior combines with likelihood in such a way as to provide analytic tractability (at least for some parameters).
- Analytical Approximations - asymptotic arguments used (e.g. Laplace).
- Numerical integration.
- Direct (Monte Carlo) sampling from the posterior, as we have already seen.
- Markov chain Monte Carlo - very complex models can be implemented, for example with WinBUGS, JAGS or Stan.
- Integrated nested Laplace approximation (INLA). Cleverly combines analytical approximations and numerical integration: we illustrate the use of this method in some detail.

Integrated Nested Laplace Approximation (INLA)

- The homepage of the INLA software is here:
http://www.r-inla.org/home
- There are also lots of example links at this website.
- The fitting of many common models is described here: http://www.r-inla.org/models/likelihoods
- INLA can fit GLMs, GLMMs and many other useful model classes.

INLA for the Linear Model

- The model is

$$
Y=\mathrm{E}\left[Y \mid x_{\mathrm{g}}, X_{\mathrm{a}}\right]=\beta_{0}+\beta_{\mathrm{g}} x_{g}+\beta_{\mathrm{a}} x_{\mathrm{a}}+\beta_{\mathrm{int}} x_{\mathrm{g}} x_{\mathrm{a}}+\epsilon
$$

where $\epsilon \mid \sigma^{2} \sim_{i i d} N\left(0, \sigma^{2}\right)$.

- This model has five parameters: the four fixed effects are $\beta_{0}, \beta_{\mathrm{g}}, \beta_{\mathrm{a}}, \beta_{\text {int }}$ and the error variance is σ^{2} (note that in inla inference is reported for the precision σ^{-2}).
- In general, posterior distributions can be summarized graphically or via numerical summaries.
- In Figures 1 and 2 give posterior marginal distributions for the fixed effects and hyperparameter σ^{-2}, respectively, under an analysis with relatively flat priors.

Mean $=1.733 \mathrm{SD}=0.584$

Figure 1: Marginal distributions of the intercept and regression coefficients.

PostDens [Precision for the Gaussian observations]

Figure 2: Marginal distribution of the error precision.

INLA for the Linear Model

- As with a non-Bayesian analysis, model checking is important and in Figure 3 we present a number of diagnostic plots.
- Plots:
(a) Normality of residuals? Sample size is quite small.
(b) Is the relationship with age linear?
(c) Mean variance relationship?
(d) Overall fit.
- For these data, the model assumptions look reasonable.

FTO Diagnostic Plots

Figure 3: Plots to assess model adequacy: (a) Normal QQ plot, (b) residuals versus age, (c) residuals versus fitted, (d) fitted versus observed.

Bayes Logistic Regression

- The likelihood is

$$
Y(x) \mid p(x) \sim \operatorname{Binomial}(N(x), p(x)), \quad x=0,1,2
$$

- Logistic link:

$$
\log \left(\frac{p(x)}{1-p(x)}\right)=\alpha+\theta x
$$

- The prior is

$$
p(\alpha, \theta)=p(\alpha) \times p(\theta)
$$

with

- $\alpha \sim \operatorname{normal}\left(\mu_{\alpha}, \sigma_{\alpha}\right)$ and
- $\theta \sim \operatorname{normal}\left(\mu_{\theta}, \sigma_{\theta}\right)$. where $\mu_{\alpha}, \sigma_{\alpha}, \mu_{\theta}, \sigma_{\theta}$ are constant that are specified to reflect prior beliefs.

Prior Choice for Positive Parameters

- It is convenient to specify lognormal priors for a positive parameter, for example $\exp (\beta)$ (the odds ratio) in a logistic regression analysis.
- One may specify two quantiles of the distribution, and directly solve for the two parameters of the lognormal.
- Denote by $\theta \sim \operatorname{LogNormal}(\mu, \sigma)$ the lognormal distribution for a generic positive parameter θ with $\mathrm{E}[\log \theta]=\mu$ and $\operatorname{var}(\log \theta)=\sigma^{2}$, and let θ_{1} and θ_{2} be the q_{1} and q_{2} quantiles of this prior.
- In our example, $\theta=\exp (\beta)$.
- Then it is straightforward to show that

$$
\begin{equation*}
\mu=\log \left(\theta_{1}\right)\left(\frac{z_{q_{2}}}{z_{q_{2}}-z_{q_{1}}}\right)-\log \left(\theta_{2}\right)\left(\frac{z_{q_{1}}}{z_{q_{2}}-z_{q_{1}}}\right), \sigma=\frac{\log \left(\theta_{1}\right)-\log \left(\theta_{2}\right)}{z_{q_{1}}-z_{q_{2}}} \tag{1}
\end{equation*}
$$

Prior Choice for Positive Parameters

- As an example, suppose that for the odds ratio e^{β} we believe there is a 50% chance that the odds ratio is less than 1 and a 95% chance that it is less than 5 ; with

$$
q_{1}=0.5, \quad \theta_{1}=1.0, \quad q_{2}=0.95, \quad \theta_{2}=5.0
$$

we obtain lognormal parameters $\mu=0$ and
$\sigma=(\log 5) / 1.645=0.98$.

- The density is shown in Figure 4.

Figure 4: Lognormal density with 50% point 1 and 95% point 5.

Logistic Regression Example

- In the second analysis we specify

$$
\begin{aligned}
\alpha & \sim \operatorname{normal}(0,1 / 0.1) \\
\theta & \sim \operatorname{normal}(0, W)
\end{aligned}
$$

where W is such that the 97.5% point of the prior is $\log (1.5)$, i.e. we believe the odds ratio lies between $2 / 3$ and $3 / 2$ with probability 0.95 .

- The marginal distributions are given in Figure 26.

Logistic Marginal Plots

PostDens [x]

Figure 5: Posterior marginals for the intercept α and the \log odds ratio θ.

The RNA-Seq Data: INLA Analysis

- Recall there are two replicates and so for each of N genes we obtain two sets of counts.
- For the diploid hybrid, let $Y_{i j}$ be the number of A alleles for gene i and replicate j, and $N_{i j}$ is the total number of counts, $j=1,2$.
- We fit a hierarchical logistic regression model starting with first stage:

$$
Y_{i j} \mid N_{i j}, p_{i j} \sim \operatorname{binomial}\left(N_{i j}, p_{i j}\right)
$$

so that $p_{i j}$ is the probability of seeing an A read for gene i and replicate j.

- At the second stage:

$$
\operatorname{logit} p_{i j}=\theta_{i}+\epsilon_{i j}
$$

where $\epsilon_{i j} \mid \sigma^{2} \sim \operatorname{normal}\left(0, \sigma^{2}\right)$ represent random effects that allow for excess-binomial variation; there are a pair for each gene.

- The θ_{i} parameters are taken as fixed effects with relatively flat priors.
- $\exp \left(\theta_{i}\right)$ is the odds of seeing an A read for gene i.
- Figures 6, 7 and 8 summarize inference.

PostDens [as.factor(xvar)2]

PostDens [as.factor(xvar)5]

PostDens [as.factor(xvar)8]

Mean $=0.028 S D=0.231$

PostDens [as.factor(xvar)3]

Mean $=0.173 S D=0.256$
PostDens [as.factor(xvar)6]

PostDens [as.factor(xvar)9]

Mean $=0.015 S D=0.234$

Figure 6: Posterior marginals for the first 9 gene effects θ_{i} (compare with zero for evidence of cis effects). We plot 9 rather than all 10 for display purposes.

rep1

Figure 7: Posterior quantiles for 20 random effects $\epsilon_{i j}$, which allow excess-binomial variation.

PostDens [Precision for rep1]

Figure 8: Posterior marginal for precision of random effects σ^{-2}.

An Informative Summary for the RNA-Seq Data

- We extract the 95% intervals and posterior medians for the log odds of being an A allele.
- Comparison with 0 (in Figure 9) gives an indication of cis effects.
- Genes 1, 2, 5, 6, 7 show evidence of cis effects.

Figure 9: Posterior marginal intervals for posterior of interest θ_{i}. Genes with posterior intervals that do not include zero, show evidence of cis effects.

Approximate Bayes Inference

- Particularly in the context of a large number of experiments, a quick and accurate model is desirable.
- We describe such a model in the context of a GWAS.
- This model is relevant when the sample size in each experiment is large.
- We first recap the normal-normal Bayes model.
- Subsequently, we describe the approximation and provide an example.

Recall: The Normal-Normal Model

- The model:
- Prior: $\theta \sim \operatorname{normal}\left(\mu_{0}, \tau_{0}^{2}\right)$ and
- Likelihood: $Y_{1}, \ldots, Y_{n} \mid \theta \sim \operatorname{normal}\left(\theta, \sigma^{2}\right)$.
- Posterior

$$
\theta \mid y_{1}, \ldots, y_{n} \sim \operatorname{normal}\left(\mu_{n}, \tau_{n}^{2}\right)
$$

where

$$
\begin{aligned}
\operatorname{var}\left(\theta \mid y_{1}, \ldots, y_{n}\right)=\tau_{n}^{2} & =\left[1 / \tau_{0}^{2}+n / \sigma^{2}\right]^{-1} \\
\text { Precision }=1 / \tau_{n}^{2} & =1 / \tau_{0}^{2}+n / \sigma^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{E}\left[\theta \mid y_{1}, \ldots, y_{n}\right]=\mu_{n} & =\frac{\mu_{0} / \tau_{0}^{2}+\bar{y} n / \sigma^{2}}{1 / \tau_{0}^{2}+n / \sigma^{2}} \\
& =\mu_{0}\left(\frac{1 / \tau_{0}^{2}}{1 / \tau_{0}^{2}+n / \sigma^{2}}\right)+\bar{y}\left(\frac{n / \sigma^{2}}{1 / \tau_{0}^{2}+n / \sigma^{2}}\right)
\end{aligned}
$$

A Normal-Normal Approximate Bayes Model

- Consider again the logistic regression model

$$
\text { logit } p_{i}=\alpha+x_{i} \theta
$$

with interest focusing on θ.

- We require priors for α, θ, and some numerical/analytical technique for estimation/Bayes factor calculation.
- Wakefield $(2007,2009)$ considered replacing the likelihood by the asymptotic distribution of the MLE, to give posterior:

$$
p(\theta \mid \widehat{\theta}) \propto p(\widehat{\theta} \mid \theta) p(\theta)
$$

where

- $\widehat{\theta} \mid \theta \sim \operatorname{normal}(\theta, V)-$ the asymptotic distribution of the MLE,
- $\theta \sim \operatorname{normal}(0, W)$ - the prior on the log RR. Can choose W so that 95% of relative risks lie in some range, e.g. [2/3,1.5].

Posterior Distribution

- Under this model, the posterior distribution for the log odds ratio θ is

$$
\theta \mid \widehat{\theta} \sim \operatorname{normal}(r \widehat{\theta}, r V)
$$

where

$$
r=\frac{W}{V+W}
$$

- Hence, we have shrinkage to the prior mean of 0 .
- The posterior median for the odds ratio is $\exp (r \widehat{\theta})$ and a 95% credible interval is

$$
\exp (r \widehat{\theta} \pm 1.96 \sqrt{r V})
$$

- Note that as $W \rightarrow \infty$ and/or $V \rightarrow 0$ (which occurs as we gather more data) the non-Bayesian point and interval estimates are recovered (since $r \rightarrow 1$).

A Normal-Normal Approximate Bayes Model

- We are interested in the hypotheses: $H_{0}: \theta=0, H_{1}: \theta \neq 0$ and evaluation of the Bayes factor

$$
\mathrm{BF}=\frac{p\left(\widehat{\theta} \mid H_{0}\right)}{p\left(\widehat{\theta} \mid H_{1}\right)}
$$

- Using the approximate likelihood and normal prior we obtain:

$$
\text { Approximate Bayes Factor }=\frac{1}{\sqrt{1-r}} \exp \left(-\frac{z^{2}}{2} r\right)
$$

with $Z=\frac{\widehat{\theta}}{\sqrt{V}}, r=\frac{W}{V+W}$.

A Normal-Normal Approximate Bayes Model

- The approximation can be combined with a Prior Odds $=\pi_{0} /\left(1-\pi_{0}\right)$ to give

$$
\text { Posterior Odds on } H_{0}=\frac{\mathrm{BFDP}}{1-\mathrm{BFDP}}=\mathrm{ABF} \times \text { Prior Odds }
$$

where BFDP is the Bayesian False Discovery Probability.

- BFDP depends on the power, through r.
- For implementation, all that we need from the data is the Z-score and the standard error \sqrt{V}, or a confidence interval.
- Hence, published results that report confidence intervals can be converted into Bayes factors for interpretation.
- The approximation relies on sample sizes that are not too small, so the normal distribution of the estimator provides a good summary of the information in the data.

Combination of Data Across Studies

- Suppose we wish to combine data from two studies where we assume a common log odds ratio θ.
- The estimates from the two studies are $\widehat{\theta}_{1}, \widehat{\theta}_{2}$ with standard errors \sqrt{V}_{1} and \sqrt{V}.
- The Bayes factor is

$$
\frac{p\left(\widehat{\theta}_{1}, \widehat{\theta}_{2} \mid H_{0}\right)}{p\left(\widehat{\theta}_{1}, \widehat{\theta}_{2} \mid H_{1}\right)}
$$

- The approximate Bayes factor is

$$
\begin{equation*}
\operatorname{ABF}\left(\widehat{\theta}_{1}, \widehat{\theta}_{2}\right)=\operatorname{ABF}\left(\widehat{\theta}_{1}\right) \times \operatorname{ABF}\left(\widehat{\theta}_{2} \mid \widehat{\theta}_{1}\right) \tag{2}
\end{equation*}
$$

where

$$
\operatorname{ABF}\left(\widehat{\theta}_{2} \mid \widehat{\theta}_{1}\right)=\frac{p\left(\widehat{\theta}_{2} \mid H_{0}\right)}{p\left(\widehat{\theta}_{2} \mid \widehat{\theta}_{1}, H_{1}\right)}
$$

and

$$
p\left(\widehat{\theta}_{2} \mid \widehat{\theta}_{1}, H_{1}\right)=\mathrm{E}_{\theta \mid \widehat{\theta}_{1}}\left[p\left(\widehat{\theta}_{2} \mid \theta\right)\right]
$$

so that the density is averaged with respect to the posterior for θ.

- Important Point: The Bayes factors are not independent.

Combination of Data Across Studies

- This leads to an approximate Bayes factor (which summarizes the data from the two studies) of
$\operatorname{ABF}\left(\widehat{\theta}_{1}, \widehat{\theta}_{2}\right)=\sqrt{\frac{W}{R V_{1} V_{2}}} \exp \left\{-\frac{1}{2}\left(Z_{1}^{2} R V_{2}+2 Z_{1} Z_{2} R \sqrt{V_{1} V_{2}}+Z_{2}^{2} R V_{1}\right)\right\}$
where
- $R=W /\left(V_{1} W+V_{2} W+V_{1} V_{2}\right)$
- $Z_{1}=\frac{\widehat{\theta}_{1}}{\sqrt{V_{1}}}$ and
- $Z_{2}=\frac{\widehat{\theta}_{2}}{\sqrt{V_{2}}}$ are the usual Z statistics.
- The ABF will be small (evidence for H_{1}) when the absolute values of Z_{1} and Z_{2} are large and they are of the same sign.
Stephens (2017) extends the ABF approach in an interesting way.

Combination of Data Across Studies: The General Case

- Suppose we have K studies with estimates $\widehat{\theta}_{k}$ and asymptotic variances $V_{k}, k=1, \ldots, K$.
- Assume a common underlying parameter θ.
- The Bayes factor is given by

$$
\begin{aligned}
\mathrm{BF}_{K} & =\frac{p\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{K} \mid H_{0}\right)}{p\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{K} \mid H_{1}\right)} \\
& =\frac{\prod_{k=1}^{K}\left(2 \pi V_{k}\right)^{-1 / 2} \exp \left(-\frac{\widehat{\theta}_{k}^{2}}{2 V_{k}}\right)}{\int \prod_{k=1}^{K}\left(2 \pi V_{k}\right)^{-1 / 2} \exp \left(-\frac{\left(\widehat{\theta}_{k}^{2}-\theta\right)^{2}}{2 V_{k}}\right)(2 \pi W)^{-1 / 2} \exp \left(-\frac{\theta^{2}}{2 V_{k}}\right) d \theta} \\
& =\sqrt{W\left(W^{-1}+\sum_{k=1}^{K} V_{k}^{-1}\right)} \exp \left[-\frac{1}{2}\left(\sum_{k=1}^{K} \frac{\widehat{\theta}_{k}}{V_{k}}\right)^{2}\left(W^{-1}+\sum_{k=1}^{K} V_{k}^{-1}\right)^{-1}\right]
\end{aligned}
$$

Combination of Studies: The General Case

- The posterior is given by

$$
\theta \mid \widehat{\theta}_{1}, \ldots, \widehat{\theta}_{K} \sim \operatorname{normal}\left(\mu, \sigma^{2}\right)
$$

where

$$
\begin{aligned}
\mu & =\left(\sum_{k=1}^{K} \frac{\widehat{\theta}_{k}}{V_{k}}\right)\left(W^{-1}+\sum_{k=1}^{K} V_{k}^{-1}\right)^{-1} \\
\sigma^{2} & =\left(W^{-1}+\sum_{k=1}^{K} V_{k}^{-1}\right)^{-1}
\end{aligned}
$$

Example of Combination of Studies in a GWAS

- We illustrate how reported confidence intervals can be converted to Bayesian summaries.
- Frayling et al. (2007) report a GWAS for Type II diabetes.
- For SNP rs9939609:

			$\operatorname{Pr}\left(H_{0} \mid\right.$ data $)$ with prior:		
Stage	Estimate (CI)	p-value	$-\log _{10} \mathrm{BF}$	$1 / 5,000$	$1 / 50,000$
1st	$1.27(1.16-1.37)$	6.4×10^{-10}	7.28	0.00026	0.0026
2nd	$1.15(1.09-1.23)$	4.6×10^{-5}	2.72	0.905	0.990
Combined	-	-	13.8	8×10^{-11}	8×10^{-10}

- Combined evidence is stronger than each separately since the point estimates are in agreement.
- For summarizing inference the ($5 \%, 50 \%, 95 \%$) points for the RR are:

Prior	$1.00(0.67-1.50)$
First Stage	$1.26(1.17-1.36)$
Combined	$1.21(1.15-1.27)$

Specifics of ASE Experiment

Details of the data:

- Two "individuals" from genetically divergent yeast strains, BY and RM, are mated to produce a diploid hybrid.
- Three replicate experiments: same individuals, but separate samples of cells.
- Two technologies: Illumina and ABI SOLiD. Each of a few trillion cells are processed.
- Pre- and post-processing steps are followed by fragmentation to give millions of 200-400 base pair long molecules, with short reads obtained by sequencing.
- Strict criteria to call each read as a match are used, to reduce read-mapping bias.
- Data from 25,652 SNPs within 4,844 genes.

Allele Specific Expression via RNA-Seq

Additional data:

- Genomic DNA is sequenced in the diploid hybrid, which has one copy of each gene from BY and from RM.
- The only difference between the genomic DNA and the main experiment is that we expect the genomic DNA to always be present 50:50 (one copy each of BY and RM), whereas for the main experiment it is only 50:50 if there is no ASE.
- For both genomic DNA and RNA we obtain counts at SNPs, at each of BY and RM.

Genomic DNA and RNA

To clarify: we have the RNA measurements which are of primary interest and the genomic DNA which is like a control.

For genomic DNA, every cell will have one copy of each locus from "Mom" and one from "Dad" (assuming diploid).

If we could sequence the contents of the cell perfectly, then across a population of billions/trillions of cells we should see exactly 50% Mom alleles and 50\% Dad alleles.

In reality there will be sampling noise due to differences in things like amplification efficiency during the sequencing library preparation process.

Genomic DNA and RNA

For the RNA, we are measuring transcribed molecules so there might be x copies of Moms locus and y copies of Dads.

The key is that the same sampling noise present in the DNA data is also present in the RNA data, because it undergoes the same sequencing library preparation process.

Actually there is one additional step for RNA which is converting to cDNA. This may add some noise as well but it is probably less than the combined effects of the other steps in the process.

So in this sense, using the DNA to model the sampling noise in molecule counts can serve as a useful baseline for calibrating our expectations of how much deviation in 50:50 we need to see at the RNA level before we believe the difference to be interesting.

Figure 10: Mapping of RNA short reads to BY and RM.

Statistical Problem

- Aim of the Experiment: Estimate the proportion of genes that display ASE.
- Let p be the probability of a map to BY at a particular SNP.
- Additionally, we would like to classify genes into:
- Genes that do not show ASE.
- Genes that show:
- Constant ASE across SNPs.
- Variable ASE across SNPs, i.e. p varies within gene.

Subsequently, we will examine genes displaying ASE to investigate the mechanism.

- A hierarchical model is feasible since we have within gene and between gene variability.
- Further, a mixture model is suggested, with a mixture of genes that do not display ASE (so there p's are 0.5) and that do display ASE.

Summaries for ASE Data

Figure 11: Summaries for RNA BY/RM yeast data; note that 739 SNP denominators are >500 and are not plotted.

Figure 12: Schematic of the hierarchical model.

Approach to Modelling RNASeq Data

Overview, three models fitted:

1. Model 1: Two component mixture model to filter out aberrant SNPs using genomic DNA data.
2. Model 2: Using the filtered genomic DNA data, fit a hierarchical SNP within gene model, to determine the "null" distribution of counts.
Specifically: "wobble" in p about 0.5 , and SNP "wobble" in p within genes.
Absence of ASE is not experimentally equivalent to $Y_{i} \sim \operatorname{binomial}\left(N_{i}, p=0.5\right)$ because of the steps involved in the experiment.
3. Model 3: For the RNA Seq data develop a two-component mixture model where each gene either displays no ASE, or ASE, with null component determined from the analysis of the genomic DNA data (Model 2).

Model 1: Filtering Model for Genomic DNA

Two-component mixture model for SNPs:

1. Majority of SNP counts arise from a beta-binomial distribution with p "close to" 0.5 (component 1).
2. Minority of SNP counts arise from a beta-binomial distribution with p "not close to" 0.5 due to sequencing bias at these SNPs (component 2).

- Data: y_{j} and N_{j} are counts at SNP j for $j=1, \ldots, m$ SNPs.
- Note: Ignores gene information - don't want to impose too much structure at this point.
- SNPs that are more likely to arise from component 2 are then removed from further analyses.

Filtering Model for Genomic DNA

- Stage 1: SNP Count Likelihood:

$$
y_{j} \mid p_{j} \sim \operatorname{binomial}\left(N_{j}, p_{j}\right), \quad j=1, \ldots, N
$$

- Stage 2: Between-SNP Prior:

$$
p_{j} \mid a, b, c, \pi_{0}= \begin{cases}\operatorname{beta}(a, a) & \text { with probability } \pi_{0} \\ \operatorname{beta}(b, c) & \text { with probability } 1-\pi_{0}\end{cases}
$$

- Stage 3: Hyperpriors: Constrain $b<1, c<1$ to give U-shaped beta distribution.

$$
\begin{aligned}
a & \sim \operatorname{lognormal}(4.3,1.8)^{\star} \\
b & \sim \text { uniform }(0,1) \\
c & \sim \text { uniform }(0,1) \\
\pi_{0} & \sim \text { uniform }(0,1)
\end{aligned}
$$

* 80% interval for $p:[0.43,0.57]$. Separate a, b, c, π_{0} for each technology.

Implementation for Genomic DNA

- Integrate p_{j} from model to give:

$$
\begin{aligned}
y_{j} \mid a, b, c, \pi_{0} & \sim \pi_{0} \times \operatorname{beta-\operatorname {binomial}(N_{j},a,a)} \\
& +\left(1-\pi_{0}\right) \times \operatorname{beta-binomial}\left(N_{j}, b, c\right) .
\end{aligned}
$$

- This is a mixture of two distributions:

1. The first distribution is for the majority of signals close to 0.5 . The size of a denotes how close is close.
2. The second distribution is for the minority of aberrant SNPs.

Implementation for Genomic DNA

- Likelihood:

$$
\begin{aligned}
\operatorname{Pr}\left(\boldsymbol{y} \mid a, b, c, \pi_{0}\right)=\prod_{j=1}^{N}\binom{N_{j}}{Y_{j}} & \left\{\pi_{0} \frac{\Gamma(2 a)}{\Gamma(a)^{2}} \frac{\Gamma\left(y_{j}+a\right) \Gamma\left(N_{j}-y_{j}+a\right)}{\Gamma\left(N_{j}+2 a\right)}\right. \\
+ & \left.\left(1-\pi_{0}\right) \frac{\Gamma(b+c)}{\Gamma(b) \Gamma(c)} \frac{\Gamma\left(y_{j}+b\right) \Gamma\left(N_{j}-y_{j}+c\right)}{\Gamma\left(N_{j}+b+c\right)}\right\}
\end{aligned}
$$

- Posterior:

$$
p\left(a, b, c, \pi_{0} \mid \boldsymbol{y}\right) \propto \operatorname{Pr}\left(\boldsymbol{y} \mid a, b, c, \pi_{0}\right) \times p(a) p(b) p(c) p\left(\pi_{0}\right) .
$$

- Implementation: Markov chain Monte Carlo.
- Recall: Sequencing bias lead to aberrant SNPs, and these errors are likely to be repeated in the main experiment.
- SNPs falling in the second mixture component were removed from further analyses.

Posterior Distributions

Figure 13: Posteriors for genomic filtering model for Illumina platform.

Posterior Filter

Figure 14: Posterior probabilities of biased genomic DNA SNPs: 1,295 removed from 25,262.

Effect of Filtering

Figure 15: Original and filtered data, for Illumina platform.

Model 2: Calibration Model for Genomic Data

- With aberrant SNPs removed, the next step is to calibrate the null component.
- Stage 1: Within-Gene Likelihood:

$$
Y_{i j} \mid p_{i j} \sim \operatorname{binomial}\left(N_{i j}, p_{i j}\right)
$$

where $p_{i j}$ is the probability of an outcome from the first genetic background.

- Stage 2: Within-Gene Prior:

$$
p_{i j} \mid \alpha_{i}, \beta_{i} \sim \operatorname{beta}\left(\alpha_{i}, \beta_{i}\right)
$$

so that α_{i}, β_{i} determine the distribution of variants within gene i.

Calibration Model for Genomic Data

- α_{i} and β_{i} are not straightforward to interpret.
- We reparameterize $\left(\alpha_{i}, \beta_{i}\right) \rightarrow\left(\boldsymbol{p}_{i}, \boldsymbol{e}_{i}\right)$ with mean and dispersion parameters (recall $\alpha_{i}+\beta_{i}$ is a prior sample size):

$$
\begin{aligned}
p_{i} & =\frac{\alpha_{i}}{\alpha_{i}+\beta_{i}} \\
e_{i} & =\frac{1}{1+\alpha_{i}+\beta_{i}}
\end{aligned}
$$

- Moments of ASE parameters:

$$
\begin{aligned}
E\left[p_{i j} \mid p_{i}, e_{i}\right] & =p_{i} \\
\operatorname{var}\left(p_{i j} \mid p_{i}, e_{i}\right) & =p_{i}\left(1-p_{i}\right) e_{i}
\end{aligned}
$$

- Moments of data:

$$
\begin{aligned}
E\left[Y_{i j} \mid p_{i}, e_{i}\right] & =N_{i j} p_{i} \\
\operatorname{var}\left(Y_{i j} \mid p_{i}, e_{i}\right) & =N_{i j} p_{i}\left(1-p_{i}\right)\left[1+\left(N_{i j}-1\right) e_{i}\right]
\end{aligned}
$$

- As $e_{i} \rightarrow 0$ we approach the binomial model.
- As $e_{i} \rightarrow 1$ we have more overdispersion (variability within gene).

Calibration Model for Genomic data

- Stage 3: Within-Gene Likelihood:

$$
\begin{aligned}
& p_{i} \mid a \sim \operatorname{beta}(a, a) \\
& e_{i} \mid d \sim \operatorname{beta}(1, d)
\end{aligned}
$$

Note: prior on within-gene dispersion is monotonic decreasing from 0 (corresponding to no variability).

- Stage 4: Hyperpriors: Require priors on $a>0, d>0$.
- We take

$$
\begin{aligned}
& a \sim \text { lognormal }(4.3,1.8) \\
& d \sim \text { exponential }(0.0001)
\end{aligned}
$$

- The latter prior determines the within-gene variability within-gene variability in genomic DNA - chosen by examination of resultant $p_{i j}$'s.
- Separate a, d for each technology.

Figure 16: Posteriors for the RNA-Seq data, Illumina platform.

Model 3: Model for RNA-Seq Data

- Data are modeled as a two-component mixture: the first "null" component having a known distribution, from the genomic DNA analysis on the filtered data.
- Stage 1: Within-Gene Likelihood:

$$
Y_{i j} \mid p_{i j} \sim \operatorname{binomial}\left(N_{i j}, p_{i j}\right)
$$

where $p_{i j}$ is the probability of an outcome from the first genetic background.

- Stage 2: Within-Gene Prior:

$$
p_{i j} \mid \alpha_{i}, \beta_{i} \sim \operatorname{beta}\left(\alpha_{i}, \beta_{i}\right)
$$

so that α_{i}, β_{i} determine the distribution of variants within gene i.

- Stage 3: Between-Gene Prior: We again reparameterize $\left(\alpha_{i}, \beta_{i}\right) \rightarrow\left(p_{i}, e_{i}\right):$
$p_{i}, e_{i} \mid f, g, h, \pi_{0} \sim \begin{cases}\operatorname{beta}(\hat{a}, \widehat{a}) \times \operatorname{beta}(1, \widehat{d}) & \text { with probability } \pi_{0} \\ \operatorname{beta}(f, g) \times \operatorname{beta}(1, h) & \text { with probability } 1-\pi_{0}\end{cases}$
with \hat{a}, \widehat{d} from genomic DNA analysis.

Stage 4: Hyperpriors: Require priors on $\pi_{0}, f>0, g>0, h>0$.

- Uniform prior on π_{0}.
- f and g describe beta distribution of p_{i} for genes displaying ASE - want this distribution to be centered on symmetry.
- Reparameterize as

$$
q=\frac{f}{f+g} \quad r=\frac{1}{1+f+g}
$$

so that $E\left[p_{i}\right]=q, \operatorname{var}\left(p_{i}\right)=q(1-q) r$.

- Through experimentation:

$$
q \sim \operatorname{beta}(100,100) \quad r \sim \operatorname{beta}(1,20)
$$

- For h, the distribution of within-gene variability in ASE:

$$
h \sim \text { exponential(0.03). }
$$

- Separate f, g, h for each technology.

Figure 17: Posteriors for the RNA-Seq data, Illumina platform.

Figure 18: Comparison of rankings from binomial test and hierarchical model.

Figure 19: Examples of opposite conclusions: $\ln (b)$ the p-value said ASE and Bayes not (large sample size, Bayes allows wobble). In (c) the p-value said no ASE, Bayes analysis yes.

All individuals

ASE individuals only

Figure 20: Between-gene variability p_{i} and within-gene variability e_{i}.

Varying ASE within genes

- One mechanism: Imagine a gene with an exon and an intron, and that we have SNPs in both.
- At each exonic SNP we see approximately the same number of BY and RM reads.
- Now suppose the intron is not spliced out for the BY allele, but it is spliced out efficiently for the RM allele. At each intronic SNP we will still see the same number of $B Y$ reads as in the exon (everything else being equal), but approximately 0 RM reads, leading to variable ASE across the gene
- In the figure: The "thin" part of the gene (YML024W) is an intron, while the "thick" part is an exon.
- For the RM allele (magenta) the intron is not spliced out, while it is mostly spliced out in the BY allele (green).

Figure 21: Example of a gene displaying variable ASE within a gene. Green = $R M$, magenta $=B Y$.

Conclusions for Mixture Model

- For the ASE data we used the DNA experiment to calibrate the prior.
- More details of this experiment and the model can be found in Skelly et al. (2011).
- Implementation was via Markov chain Monte Carlo, but we had to write our own code.

Conclusions

- Computationally GLMs and GLMMs can now be fitted in a relatively straightforward way.
- INLA is very convenient and is being constantly improved.
- As with all analyses, it is crucial to check modeling assumptions (and there are usually more in a Bayesian analysis).
- Markov chain Monte Carlo provides an alternative for computation. WinBUGS is one popular implementation.
- Other MCMC possibilities include: JAGS, Stan.
- The mixture models required specialized code.

References

Connelly, C., Wakefield, J., and Akey, J. (2014). Evolution and architecture of chromatin accessibility and function in yeast. PLoS Genetics. To appear.
Frayling, T., Timpson, N., Weedon, M., Zeggini, E., Freathy, R., and et al., C. L. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889-894.
Skelly, D., Johansson, M., Madeoy, J., Wakefield, J., and Akey, J. (2011). A powerful and flexible statistical framework for testing hypothesis of allele-specific gene expression from RNA-Seq data. Genome Research, 21, 1728-1737.
Stephens, M. (2017). False discovery rates: a new deal. Biostatistics, 18, 275-294.
Wakefield, J. (2007). A Bayesian measure of the probability of false discovery in genetic epidemiology studies. American Journal of Human Genetics, 81, 208-227.
Wakefield, J. (2009). Bayes factors for genome-wide association studies: comparison with p-values. Genetic Epidemiology, 33, 79-86.

[^0]: ${ }^{1}$ so that the distribution is of the form $p\left(y_{i} \mid \theta_{i}, \alpha\right)=\exp \left(\left\{y_{i} \theta_{i}-b\left(\theta_{i}\right)\right\} / \alpha+c\left(y_{i}, \alpha\right)\right)$, where θ_{i} and α are scalars

