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Model selection and averaging

Diabetes example:

• 342 subjects

• yi = diabetes progression

• xi = explanatory variables.

Each xi includes

• 13 subject specific measurements (xage, xsex, . . .);

• 78 =
(

13
2

)
interaction terms (xage · xsex, . . .) ;

• 9 quadratic terms (xsex and three genetic variables are binary)

100 explanatory variables total!
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OLS regression

0 20 40 60 80 100

−
10

−
5

0
5

regressor index

β̂ o
ls ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

● ●

● ●

●

●

●

●

−1 0 1 2

−
1

0
1

2
3

y test
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Backwards elimination

1. Obtain the estimator β̂ββols = (XXXTXXX)−1XXXTy and its t-statistics.

2. If there are any regressors j such that |tj| < tcutoff,

(a) find the regressor jmin having the smallest value of |tj| and

remove column jmin from XXX.

(b) return to step 1.

3. If |tj| > tcutoff for all variables j remaining in the model, then

stop.
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Backwards elimination
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Spurious associations

Now try modeling permuted yπ(i) = βββTxi + εi (and backwards-

select)
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Spurious associations
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Spurious associations

sum(abs(t.bslperm)>2 )
## [1] 21
sum(abs(t.bslperm)>3 )
## [1] 12
sum(abs(t.bslperm)>4 )
## [1] 5

• 21 regressors have t-stats > 2 (p ≈ 0.05)

• 12 regressors have t-stats > 3 (p ≈ 0.003)

• 5 regressors have t-stats > 4 (p ≈ 0.00006)

Often want some way to pick a sparse model – but this approach

is not smart.
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Bayesian model selection

Prior belief: βj ≈ 0 for many j’s.

Formulation: Write βj = zj × bj, where zj ∈ {0,1} and bj ∈ R.

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi.

For example, in the FTO experiment,

E[Y |x, b, z = (1,0,1,0) ] = b1x1 + b3x3

= b1 + b3 × age

E[Y |x, b, z = (1,1,0,0) ] = b1x1 + b2x2

= b1 + b2 × group

E[Y |x, b, z = (1,1,1,0) ] = b1x1 + b2x2 + b3x3

= b1 + b2 × group + b3 × age.

Can think of each value of z = (z1, . . . , zp) representing a
different model.
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Bayesian model selection

Or, think of zj as unknown components in one (big) model –

written informally as;

zj
i.i.d.∼ Bern(0.5)

bj ∼ p(bj)

εi
i.i.d.∼ N(0, σ2)

σ2 ∼ p(σ2)

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi

Each of the 2p possible values of of z has a posterior probability.

(In the prior we treat them as a ‘coin toss’, equally likely to be

‘in’ or ‘out’.)
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Bayesian model comparison

Posterior probability

p(z|y,XXX) =
p(z)p(y|XXX, z)

p(y|XXX)

Model comparison

p(za|y,XXX)

p(zb|y,XXX)
=

p(za)

p(zb)
×

p(y|XXX, za)

p(y|XXX, zb)
posterior odds = prior odds × “Bayes factor”

Note that the Bayes Factor (BF) does not depend on the prior

for z – so the ‘coin toss’ prior is not crucial for this approach.
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Parsimony

The formula for p(y|x, z) is complex, but

p(y|XXX, za)

p(y|XXX, zb)
= (1 + n)(pzb−pza)/2

s2
za

s2
zb

1/2

×

s2
zb

+ SSR
zb
g

s2
za + SSRzag

(n+1)/2

.

So a model za is penalized if;

• it is too complex (number of covariates pA is large)

• it doesn’t fit well (SSRag is large)
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FTO example

E[Yi|βββ,xi ] = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4
= β1 + β2 × grpi + β3 × agei + β4 × grpi × agei .

effect of group ⇔ one of more of β2, β4 not zero

z model log p(y|XXX, z) p(z|y,XXX)
(1,0,0,0) β1 −71.82 0
(1,1,0,0) β1 + β2 × grpi −70.04 0
(1,0,1,0) β1 + β3 × agei −67.04 0
(1,1,1,0) β1 + β2 × grpi + β3 × agei −61.19 0.63
(1,1,1,1) β1 + β2 × grpi + β3 × agei + β4 × grpi × agei −61.72 0.37

P[β2 or β4 6= 0 ] = 0.60

P[β2 or β4 6= 0|y,XXX ] ≈ 1
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FTO example: using JAGS

Using the conjugate g-prior is a little artificial here;

• Each sub-model has a prior that corresponds to one observa-

tion’s information, but those observations are not the same.

• It’s strange to support the model with all βj = 0, i.e. where

E[Yi|xi ] is exactly zero for everyone

So we’ll instead use a general-purpose Gibbs sampler for the

same model, but with z1 = 1 (forcing an intercept) and

zj
i.i.d.∼ Bern(0.5)

bj ∼ N(0,10), for j = 2,3,4

εi
i.i.d.∼ N(0, σ2)

1/σ2 ∼ Γ(0.5,1.839) ... as in Lec 4

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi
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Reminder: Gibbs sampler

Goal: A Monte Carlo approximation to p(x, y, z)

Given {x(s), y(s), z(s)},

1. simulate x(s+1) ∼ p(x|y(s), z(s)),

2. simulate y(s+1) ∼ p(y|x(s+1), z(s)),

3. simulate z(s+1) ∼ p(z|xs+1), y(s+1)) .

This generates {x(s+1), y(s+1), z(s+1)} – and then ‘go round’

again, many times. Repeated many times, this generates

{x(1), y(1), z(1)}, . . . , {x(S), y(S), z(S)}
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Reminder: Gibbs sampler

For a couple of two-dimensional examples;
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Reminder: Gibbs sampler

Output from a short sampler;
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Reminder: Gibbs sampler

Repeated many times, this gives {x(1), y(1), z(1)}, . . . , {x(S), y(S), z(S)}

The distribution of this sequence approximates p(x, y, z):

1

S

∑
x(s) ≈ Ex =

∫
x p(x, y, z) dx dy dz

#(x(s) ∈ A)

S
≈ Pr(x ∈ A) =

∫ ∫ ∫
A
p(x, y, z) dx dy dz

#({x(s), y(s), z(s)} ∈ B)

S
≈

∫ ∫ ∫
B

p(x, y, z) dx dy dz

By necessity, the sequence will frequently visit regions where

p(x, y, z) is large.
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Gibbs sampling: for model selection

Goal Approximate p(z1, . . . , zp|y,XXX).

Gibbs sampler: Given z(s) = (z(s)
1 , . . . , z

(s)
p ),

z
(s+1)
1 ∼ p(z1|z

(s)
2 , . . . , z

(s)
p ,y,XXX)

z
(s+1)
2 ∼ p(z2|z

(s+1)
1 , z

(s)
3 , . . . , z

(s)
p ,y,XXX)

...

z
(s+1)
p ∼ p(zp|z(s+1)

1 , . . . , z
(s+1)
p−1 ,y,XXX)

This generates z(s+1) from z(s).

Repeating this generates z(1), . . . , z(S) with which to approximate

p(z|y,XXX).
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FTO example: using JAGS

Stan doesn’t handle discrete parameters like the zi well (yet) so

we use JAGS – Just Another Gibbs Sampler. Like Stan, it writes

and executes MCMC code, given a model and data.

library("rjags")
# first, write the model as to a text file
cat(file="linearprog2.txt", "model{

for(j in 1:p){
b[j]~dnorm(0, 0.1)

}
z[1] <- 1
for(j in 2:p){

z[j] ~ dbern(0.5)
}

inv.sigma2 ~ dgamma( 0.5, 1.839 )
sigma <- sqrt(1/inv.sigma2)
for(i in 1:n){

mu[i] <- x[i,1]*b[1]*z[1] + x[i,2]*b[2]*z[2] + x[i,3]*b[3]*z[3] + x[i,4]*b[4]*z[4]
y[i] ~ dnorm(mu[i], inv.sigma2) }
}")
# compile code based on model and data, then run chain
jags1 <- jags.model("linearprog2.txt", data=list(y=y,x=X, n=nrow(X), p=ncol(X)) )
update(jags1, 50000) # initial iteraions

6.18
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FTO example: using JAGS

And some of the output;

> jags1.out <- coda.samples(jags1, c("b","inv.sigma2", "z"), n.iter=100000)[[1]]
> summary(jags1.out)
Iterations = 50001:150000
Number of chains = 1
Sample size per chain = 1e+05
1. Empirical mean and standard deviation for each variable & std err of the mean:

Mean SD Naive SE Time-series SE
b[1] 0.7593 1.26609 0.0040037 0.0184052
b[2] 1.2431 2.71152 0.0085746 0.0300475
b[3] 2.6202 0.39962 0.0012637 0.0057575
b[4] 2.1791 0.62138 0.0019650 0.0091990
inv.sigma2 0.2676 0.09069 0.0002868 0.0004338
z[1] 1.0000 0.00000 0.0000000 0.0000000
z[2] 0.5604 0.49634 0.0015696 0.0058886
z[3] 1.0000 0.00000 0.0000000 0.0000000
z[4] 0.9928 0.08431 0.0002666 0.0015052

The coefficient of genotype is 6= 0 with 56% posterior support;
the interaction term being 6= 0 has 99% support. The
chain never moved from supporting age term 6= 0, so it has
(approximately) 100% support.

6.19



FTO example: using JAGS

All 100,000 steps in the chain are stored, so we can assess
posterior for other terms – for example the support for each
set of included/excluded variables;
> table(apply(

jags1.out[,c("z[1]","z[2]","z[3]","z[4]")], 1, paste, collapse="")
)/100000

1011 1110 1111
0.43851 0.00693 0.55456

And comparing the posteriors for b2 to the posterior to the actual
genotype coefficient, β2 = b2 × z2;
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FTO example: using JAGS

Using MCMC, we have to start the ‘chain’ somewhere – but this
arbitrary choice shouldn’t affect analysis

• After running long enough, the chains from any two starting
points should converge to cover the posterior in the same
way
• Less formally, after running long enough, chains forget where

they started
• It’s pragmatic to run chains from a few different starting

points, and check they give similar answers

JAGS makes this fairly painless – here for 4 short chains;

set.seed(4)
inits1 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,0,1,0))
inits2 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,0,0,0))
inits3 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,1,1,0))
inits4 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,1,1,1))
jags2 <- jags.model("linearprog2.txt", data=list(y=y,x=X, n=nrow(X), p=ncol(X)),
inits=list( inits1, inits2, inits3, inits4), n.chains=4 )
jags2.out <- coda.samples(jags2, c("b"), n.iter=10000)
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FTO example: using JAGS

An informal way to check for convergence is to look for
differences in each chain’s traceplot; (no issues seen here)

plot(jags2.out, trace=TRUE, density=FALSE, auto.layout=FALSE,
col=adjustcolor(2:5, alpha.f=0.25), lty=1)
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FTO example: using JAGS

To more formally check convergence of the chains for individual
parameters, the Gelman-Rubin diagnostic compares within-chain
variance (W ) to between-chain variance (B), using tools from
mixed models.

For a converged chain we should get R = W/B ≈ 1...

> gelman.diag(jags2.out)
Potential scale reduction factors:

Point est. Upper C.I.
b[1] 1 1.00
b[2] 1 1.00
b[3] 1 1.00
b[4] 1 1.01

Similar ideas provide the effective sample size, i.e. roughly how
big a simple random sample from the posterior is represented by
the (auto-correlated) chain

> effectiveSize(jags2.out)
b[1] b[2] b[3] b[4]

1860.972 3057.044 1898.274 1586.170 # each from 40,000 iterations
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FTO example: using JAGS

gelman.plot(jags2.out) shows how W/B evolves over iterations;
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Ideally, don’t start using the chain output until it looks like its
converged – and even then, use as long a chain as you can
manage – thinned, if memory is an issue.

6.24



Stochastic search: High dim’l regression

Diabetes example: p = 100⇒ 2100 ≈ 1030 models to consider.

We can’t compute P[ z|y,XXX ] for each z. Instead, we hope to

• search for models z with high posterior probability;

• approximate βj = zj × bj for each j;

• build a predictive model for y.

We can view Gibbs Sampling here as a way to explore possible

models – not to fully cover the whole parameter space. It will

tend to sample models that better support the data.
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Diabetes example
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Marginal inference

What is the estimate of βββ? Recall

βββ = (β1, . . . , βp) = (b1z1, . . . , bp, zp)

Our Monte Carlo samples are

βββ(1) = (0 −.299 0 .427 · · · .845)

βββ(2) = (0 −.235 .834 .374 · · · 0)
... ...

βββ(S) = (0 −.315 0 .536 · · · 0)

A posterior mean for βββ is obtained in the usual way:

β̂ββ
bayes

=
1

S

∑
βββ(s) ≈ Eβββ|y,XXX

Out of sample predictions can be made with β̂ββbayes:

ŷ
bayes
test,i = β̂ββ

T
bayesxtest,i

Out of sample prediction error:
1

S

∑
(ytest,i − ŷ

bayes
test,i )2 = 0.485
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Marginal inference
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Important variables

colnames(X)[ order(z.pmean,decreasing=TRUE)[1:10] ]
## [1] "bmi" "ltg" "g2" "map" "tc" "sex.age" "sex"
## [8] "ldl" "ltg.age" "tch"

colnames(X)[ order(b.pmean,decreasing=TRUE)[1:10] ]
## [1] "ltg" "bmi" "ldl" "map" "sex.age" "hdl" "ltg.age"
## [8] "tch" "glu.bmi" "map.sex"
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Other approaches, briefly

Model-averaging in this way gives an honest statement of

uncertainty. But;

• Not all variables are in the model for the same reason – may

want to ‘force’ some covariates into the model

• When selecting a single, parsimonious model, may want to

maximize its ability to predict – not its probability of being

true
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Confounding

‘Confounding’ means not being able to distinguish between a

signal of interest, and some other cause. Here’s a genetic

‘signal’;

G

Y

AA Aa aa

6.31



Confounding

...which can be explained by ancestry, i.e. is confounded by

ancestry

G

Y

AA Aa aa

However, analysis that adjusts for ancestry would be of interest

– even if models without it are better-supported.
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Confounding

Directed Acyclic Graphs (DAGs) are a general language for

confounding;

Arrows indicate causal relationships; confounding means ‘back-

door paths’ exist; these can be removed by adjustment for

confounders. In genetic association work, typically ancestry is

the only plausible confounder - expression and methylation work

is more complex.
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Confounding

Bayesian Adjustment for Confounding (BAC, Wang et al 2012)

specifies a model with

1. Dependence of outcome on the exposure and the set of

confounders

2. Dependence of exposure on the set of confounders

3. Dependence between these models, making variable inclusion

in (1) more likely if it is included in (2)

So BAC fits two set of z indicators, and links them. Modeling

exposures is unusual – doing it well takes careful work.

The method is implemented in BEAU, a stand-alone R package,

using approximate calculations for the posterior.
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Prediction

Understanding causes (and confounding) is often very important

– but ability to predict can matter too;

• Remaining lifetime

• Drug response

• Telling ‘good’ genotyping from ‘bad’

To pick a model here, it’s reasonable to ask how well it would

predict in similarly-collected data. This choice may not be the

same as asking what the causes are, e.g. TV ownership rates

predict child mortality but are not a cause.
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Cross-validation

A natural way to assess how well a fitted model predicts is to fit
it, and predict!

SSR is a common measure of predictive accuracy
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Cross-validation

• SSR (squared error loss) is not the only option – need to

consider the loss (utility) of particular predictions

• For categorical outcomes, could also weight misclassification

rates (e.g. P (1|0) and P (0|1)) – some mistakes may be worse

than others

• Trickier still for dependent outcomes

• 10-fold cross-validation is typical

• Fitting multiple models with Gibbs sampling, and cross-

validating each can be too slow
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Approximate prediction measures

The standard ‘score’ is log posterior predictive density

log pppost(y) = log
∫
p(y|θ)p(θ|y)obsdθ).

Expected out-of-sample accuracy (over new datasets ỹ) is

defined as

elpd = E(log pppost(ỹ)) =
∫

log pppost(ỹ)q(ỹ)dỹ

for true density q(ỹ). A natural way to estimate this is through

the ‘in sample accuracy’,

lpd = log
∫
p(yobs|θ)p(θ|y)obsdθ,

but its double-use of the posterior leads to bias – worse with

more parameters.
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Approximate prediction measures

• Akaike’s Information Criterion (AIC) approximates lpd by

log p(yobs|θ̂MLE) – so is not Bayesian, and adds bias-

correction k, the number of parameters

• Deviance Information Criterion (DIC) approximates lpd by

log p(yobs|E(θ|yobs)) and adds the effective number of pa-

rameters,

pD = 2 (log p(yobs|E[ θ|yobs ])− Eθ[ log p(yobs|θ) ])

For either, in large samples – and under some conditions –

choosing the model with the lowest value is equivalent to doing

cross-validation.

Note: several other versions are available; AIC, DIC2, WAIC...
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DIC examples

• Shriner and Yi 2009 use DIC in the context of multiple QTL

Mapping – to select how many QTLs there are, and their

locations

• Yu et al, 2012 use DIC studying gene×environment interac-

tions, with a model that ‘clusters’ nearby∗ variants, so they

have similar interaction effects. DIC is used to choose how

many clusters

* ...using the Potts model
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682718/
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002482
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