

Bayesian Statistics for Genetics Lecture 4: Linear Regression

Ken Rice

Swiss Institute in Statistical Genetics
September, 2017

Regression models: overview

How does an outcome Y vary as a function of $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{p}\right\}$?

- What are the effect sizes?
- What is the effect of x_{1}, in observations that have the same $x_{2}, x_{3}, \ldots x_{p}$ (a.k.a. "keeping these covariates constant")?
- Can we predict Y as a function of \boldsymbol{x} ?

These questions can be assessed via a regression model $p(y \mid \boldsymbol{x})$.

Regression models: overview

Parameters in a regression model can be estimated from data:

$$
\left(\begin{array}{cccc}
y_{1} & x_{1,1} & \cdots & x_{1, p} \\
\vdots & \vdots & & \vdots \\
y_{n} & x_{n, 1} & \cdots & x_{n, p}
\end{array}\right)
$$

The data are often expressed in matrix/vector form:

$$
\boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{c}
\boldsymbol{x}_{1} \\
\vdots \\
\boldsymbol{x}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, p} \\
\vdots & & \vdots \\
x_{n, 1} & \cdots & x_{n, p}
\end{array}\right)
$$

FTO example: design

FTO gene is hypothesized to be involved in growth and obesity.

Experimental design:

- 10 fto $+/-$ mice
- 10 fto - /- mice
- Mice are sacrificed at the end of 1-5 weeks of age.
- Two mice in each group are sacrificed at each age.

FTO example: data

FTO example: analysis

- $y=$ weight
- $x_{g}=$ indicator of fto heterozygote $\in\{0,1\}=$ number of " + " alleles
- $x_{a}=$ age in weeks $\in\{1,2,3,4,5\}$

How can we estimate $p\left(y \mid x_{g}, x_{a}\right)$?

Cell means model:

\[

\]

Problem: 10 parameters - only two observations per cell

Linear regression

Solution: Assume smoothness as a function of age. For each group,

$$
y=\alpha_{0}+\alpha_{1} x_{a}+\epsilon
$$

This is a linear regression model. Linearity means "linear in the parameters", i.e. several covariates, each multiplied by corresponding α, and added.

A more complex model might assume e.g.

$$
y=\alpha_{0}+\alpha_{1} x_{a}+\alpha_{2} x_{a}^{2}+\alpha_{3} x_{a}^{3}+\epsilon
$$

- but this is still a linear regression model, even with age ${ }^{2}$, age ${ }^{3}$ terms.

Multiple linear regression

With enough variables, we can describe the regressions for both groups simultaneously:

$$
\begin{aligned}
Y_{i} & =\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\beta_{4} x_{i, 4}+\epsilon_{i}, \text { where } \\
x_{i, 1} & =1 \text { for each subject } i \\
x_{i, 2} & =0 \text { if subject } i \text { is homozygous, } 1 \text { if heterozygous } \\
x_{i, 3} & =\text { age of subject } i \\
x_{i, 4} & =x_{i, 2} \times x_{i, 3}
\end{aligned}
$$

Note that under this model,

$$
\begin{aligned}
\mathbb{E}[Y \mid \boldsymbol{x},] & =\beta_{1}+\beta_{3} \times \text { age if } x_{2}=0, \text { and } \\
\mathbb{E}[Y \mid \boldsymbol{x}] & =\left(\beta_{1}+\beta_{2}\right)+\left(\beta_{3}+\beta_{4}\right) \times \text { age if } x_{2}=1
\end{aligned}
$$

Multiple linear regression

For graphical thinkers...

Normal linear regression

How does each Y_{i} vary around its mean $\mathbb{E}\left[Y_{i} \mid \boldsymbol{\beta}, \boldsymbol{x}_{i}\right]$, ?

$$
\begin{aligned}
Y_{i} & =\boldsymbol{\beta}^{T} \boldsymbol{x}_{i}+\epsilon_{i} \\
\epsilon_{1}, \ldots, \epsilon_{n} & \sim \text { i.i.d. normal }\left(0, \sigma^{2}\right)
\end{aligned}
$$

This assumption of Normal errors specifies the likelihood:

$$
\begin{aligned}
p\left(y_{1}, \ldots, y_{n} \mid \boldsymbol{x}_{1}, \ldots \boldsymbol{x}_{n}, \boldsymbol{\beta}, \sigma^{2}\right) & =\prod_{i=1}^{n} p\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\beta}, \sigma^{2}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)^{2}\right\}
\end{aligned}
$$

Note: in large(r) sample sizes, analysis is "robust" to the Normality assumption-but here we rely on the mean being linear in the \boldsymbol{x} 's, and on the ϵ_{i} 's variance being constant with respect to \boldsymbol{x}.

Matrix form

- Let \boldsymbol{y} be the n-dimensional column vector $\left(y_{1}, \ldots, y_{n}\right)^{T}$;
- Let \mathbf{X} be the $n \times p$ matrix whose i th row is \boldsymbol{x}_{i}

Then the normal regression model is that

$$
\boldsymbol{y} \mid \mathbf{X}, \boldsymbol{\beta}, \sigma^{2} \sim \text { multivariate normal }\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right),
$$

where \mathbf{I} is the $p \times p$ identity matrix and
$\mathbf{X} \boldsymbol{\beta}=\left(\begin{array}{c}\boldsymbol{x}_{1} \rightarrow \\ \boldsymbol{x}_{2} \rightarrow \\ \vdots \\ \boldsymbol{x}_{n} \rightarrow\end{array}\right)\left(\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right)=\left(\begin{array}{c}\beta_{1} x_{1,1}+\cdots+\beta_{p} x_{1, p} \\ \vdots \\ \beta_{1} x_{n, 1}+\cdots+\beta_{p} x_{n, p}\end{array}\right)=\left(\begin{array}{c}\mathbb{E} Y_{1} \mid \boldsymbol{\beta}, \boldsymbol{x}_{1} \\ \vdots \\ \mathbb{E} Y_{n} \mid \boldsymbol{\beta}, \boldsymbol{x}_{n}\end{array}\right)$.

Ordinary least squares estimation

What values of β are consistent with our data $\boldsymbol{y}, \mathbf{X}$?
Recall
$p\left(y_{1}, \ldots, y_{n} \mid \boldsymbol{x}_{1}, \ldots \boldsymbol{x}_{n}, \boldsymbol{\beta}, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)^{2}\right\}$.
This is big when $\operatorname{SSR}(\beta)=\sum\left(y_{i}-\beta^{T} x_{i}\right)^{2}$ is small - where we define

$$
\begin{aligned}
\operatorname{SSR}(\boldsymbol{\beta}) & =\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)^{2}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{\beta}^{T} \mathbf{X}^{T} \boldsymbol{y}+\boldsymbol{\beta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

What value of β makes this the smallest, i.e. gives fitted values closest to the outcomes $y_{1}, y_{2}, \ldots y_{n}$?

OLS: with calculus

'Recall' that...

1. a minimum of a function $g(z)$ occurs at a value z such that $\frac{d}{d z} g(z)=0 ;$
2. the derivative of $g(z)=a z$ is a and the derivative of $g(z)=$ $b z^{2}$ is $2 b z$.

Doing this for SSR...

$$
\begin{aligned}
\frac{d}{d \boldsymbol{\beta}} \mathrm{SSR}(\boldsymbol{\beta}) & =\frac{d}{d \boldsymbol{\beta}}\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{\beta}^{T} \mathbf{X}^{T} \boldsymbol{y}+\boldsymbol{\beta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}\right) \\
& =-2 \mathbf{X}^{T} \boldsymbol{y}+2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta} \\
\text { and so } \frac{d}{d \boldsymbol{\beta}} \mathrm{SSR}(\boldsymbol{\beta})=0 & \Leftrightarrow-2 \mathbf{X}^{T} \boldsymbol{y}+2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}=0 \\
& \Leftrightarrow \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{T} \boldsymbol{y} \\
& \Leftrightarrow \boldsymbol{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}
\end{aligned}
$$

$\widehat{\boldsymbol{\beta}}_{\text {ols }}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}$ is the Ordinary Least Squares (OLS) estimator of $\boldsymbol{\beta}$.

OLS: without calculus

The calculus-free, algebra-heavy version - which relies on knowing the answer in advance!

Writing $\Pi=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$, and noting that $\mathbf{X}=\Pi \mathbf{X}$ and $\mathbf{X} \widehat{\boldsymbol{\beta}}_{\text {ols }}=$ $\sqcap y$;

$$
\begin{aligned}
(\boldsymbol{y}-\mathrm{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\mathrm{X} \boldsymbol{\beta}) & =(\boldsymbol{y}-\Pi \boldsymbol{y}+\Pi \boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\Pi \boldsymbol{y}+\Pi \boldsymbol{y}-\mathrm{X} \boldsymbol{\beta}) \\
& =\left((I-\Pi) \boldsymbol{y}+\Pi\left(\widehat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)\right)^{T}\left((I-\Pi) \boldsymbol{y}+\Pi\left(\widehat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)\right) \\
& =\boldsymbol{y}^{T}(I-\Pi) \boldsymbol{y}+\left(\widehat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)^{T} \Pi\left(\widehat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)
\end{aligned}
$$

because all the 'cross terms' with Π and $I-\Pi$ are zero.
Hence the value of β that minimizes the SSR - for a given set of data - is $\widehat{\boldsymbol{\beta}}_{\text {ols }}$.

OLS: using R

```
### OLS estimate
> beta.ols <- solve( t(X)%*%X )%*%t(X)%*%y
> beta.ols
    [,1]
(Intercept) -0.06821632
xg 2.94485495
xa 2.84420729
xg:xa 1.72947648
### or less painfully, using lm()
> fit.ols<-lm( y~ xg*xa )
> coef( summary(fit.ols) )
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.06821632 1.4222970 -0.04796208 9.623401e-01
xg 2.94485495 2.0114316 1.46405917 1.625482e-01
xa 2.84420729 0.4288387 6.63234803 5.760923e-06
xg:xa 1.72947648 0.6064695 2.85171239 1.154001e-02
```


OLS: using R

> coef(summary (fit.ols))
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.06821632 1.4222970-0.04796208 9.623401e-01
$\mathrm{xg} \quad 2.94485495 \quad 2.0114316 \quad 1.46405917 \quad 1.625482 \mathrm{e}-01$
xa $2.84420729 \quad 0.4288387 \quad 6.632348035 .760923 \mathrm{e}-06$
$\mathrm{xg}: \mathrm{xa} \quad 1.72947648 \quad 0.6064695 \quad 2.851712391 .154001 \mathrm{e}-02$

Bayesian inference for regression models

$$
y_{i}=\beta_{1} x_{i, 1}+\cdots+\beta_{p} x_{i, p}+\epsilon_{i}
$$

Motivation:

- Incorporating prior information
- Posterior probability statements: $\mathbb{P}\left[\beta_{j}>0 \mid \boldsymbol{y}, \mathbf{X}\right]$
- OLS tends to overfit when p is large, Bayes' use of prior tends to make it more conservative - as we'll see
- Model selection and averaging (more later)

Prior and posterior distribution

$$
\begin{array}{lcc}
\text { prior } & \boldsymbol{\beta} & \sim \operatorname{mvn}\left(\boldsymbol{\beta}_{0}, \Sigma_{0}\right) \\
\text { sampling model } & \boldsymbol{y} & \sim \operatorname{mvn}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) \\
\text { posterior } & \boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X} & \sim \operatorname{mvn}\left(\boldsymbol{\beta}_{n}, \Sigma_{n}\right)
\end{array}
$$

where

$$
\begin{aligned}
\Sigma_{n}=\operatorname{Var} \boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2} & =\left(\Sigma_{0}^{-1}+\mathbf{X}^{T} \mathbf{X} / \sigma^{2}\right)^{-1} \\
\boldsymbol{\beta}_{n}=\mathbb{E} \boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2} & =\left(\Sigma_{0}^{-1}+\mathbf{X}^{T} \mathbf{X} / \sigma^{2}\right)^{-1}\left(\Sigma_{0}^{-1} \boldsymbol{\beta}_{0}+\mathbf{X}^{T} \boldsymbol{y} / \sigma^{2}\right)
\end{aligned}
$$

Notice:

- If $\Sigma_{0}^{-1} \ll \mathbf{X}^{T} \mathbf{X} / \sigma^{2}$, then $\boldsymbol{\beta}_{n} \approx \widehat{\boldsymbol{\beta}}_{\text {ols }}$
- If $\Sigma_{0}^{-1} \gg \mathbf{X}^{T} \mathbf{X} / \sigma^{2}$, then $\boldsymbol{\beta}_{n} \approx \boldsymbol{\beta}_{0}$

The g-prior

How to pick $\boldsymbol{\beta}_{0}, \Sigma_{0}$? A classical suggestion (Zellner, 1986) uses the g-prior:

$$
\beta \sim \operatorname{mvn}\left(0, g \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
$$

Idea: The variance of the OLS estimate $\hat{\boldsymbol{\beta}}_{\text {ols }}$ is

$$
\operatorname{Var} \widehat{\boldsymbol{\beta}}_{\mathrm{ols}}=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{n}\left(\mathbf{X}^{T} \mathbf{X} / n\right)^{-1}
$$

This is (roughly) the uncertainty in β from n observations.

$$
\operatorname{Var} \boldsymbol{\beta}_{\text {gprior }}=g \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{n / g}\left(\mathbf{X}^{T} \mathbf{X} / n\right)^{-1}
$$

The g-prior can roughly be viewed as the uncertainty from n / g observations.

For example, $g=n$ means the prior has the same amount of info as 1 observation - so (roughly!) not much, in a large study.

Posterior distributions under the g-prior

After some algebra, it turns out that

$$
\begin{aligned}
\left\{\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right\} & \sim \operatorname{mvn}\left(\boldsymbol{\beta}_{n}, \Sigma_{n}\right) \\
\text { where } \Sigma_{n}=\operatorname{Var}\left[\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right] & =\frac{g}{g+1} \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
\boldsymbol{\beta}_{n}=\mathbb{E}\left[\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right] & =\frac{g}{g+1}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}
\end{aligned}
$$

Notes:

- The posterior mean estimate $\boldsymbol{\beta}_{n}$ is simply $\frac{g}{g+1} \widehat{\boldsymbol{\beta}}_{\text {ols }}$.
- The posterior variance of β is simply $\frac{g}{g+1} \operatorname{Var} \widehat{\boldsymbol{\beta}}_{\text {ols }}$.
- g shrinks the coefficients towards 0 and can prevent overfitting to the data
- If $g=n$, then as n increases, inference approximates that using $\widehat{\boldsymbol{\beta}}_{\text {ols }}$.

Monte Carlo simulation

What about the error variance σ^{2} ? It's rarely known exactly, so more realistic to allow for uncertainty with a prior...
prior $\quad 1 / \sigma^{2} \sim \operatorname{gamma}\left(\nu_{0} / 2, \nu_{0} \sigma_{0}^{2} / 2\right)$
sampling model

$$
\left.\begin{aligned}
& \text { sampling model } \\
& \text { posterior }
\end{aligned} 1 / \sigma^{2} \right\rvert\, \boldsymbol{y}, \mathbf{X} \sim \operatorname{mvn}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) \quad \operatorname{gamma}\left(\left[\nu_{0}+n\right] / 2,\left[\nu_{0} \sigma_{0}^{2}+\mathrm{SSR}_{g}\right] / 2\right)
$$

where SSR_{g} is somewhat complicated.
Simulating the joint posterior distribution:
joint distribution $\quad p\left(\sigma^{2}, \boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}\right)=p\left(\sigma^{2} \mid \boldsymbol{y}, \mathbf{X}\right) \times p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right)$
simulation $\quad\left\{\sigma^{2}, \boldsymbol{\beta}\right\} \sim p\left(\sigma^{2}, \boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}\right) \Leftrightarrow \sigma^{2} \sim p\left(\sigma^{2} \mid \boldsymbol{y}, \mathbf{X}\right), \boldsymbol{\beta} \sim p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right)$
To simulate $\left\{\sigma^{2}, \boldsymbol{\beta}\right\} \sim p\left(\sigma^{2}, \boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}\right)$,

- First simulate σ^{2} from $p\left(\sigma^{2} \mid \boldsymbol{y}, \mathbf{X}\right)$
- Use this σ^{2} to simulate $\boldsymbol{\beta}$ from $p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right)$

Repeat 1000's of times to obtain MC samples: $\left\{\sigma^{2}, \boldsymbol{\beta}\right\}^{(1)}, \ldots,\left\{\sigma^{2}, \beta\right\}^{(S)}$.

FTO example: Bayes

Priors:

$$
\begin{aligned}
& 1 / \sigma^{2} \sim \operatorname{gamma}(1 / 2,3.678 / 2) \\
& \beta \mid \sigma^{2} \sim \operatorname{mvn}\left(\mathbf{0}, g \times \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

Posteriors:

$$
\begin{aligned}
& \left\{1 / \sigma^{2} \mid \boldsymbol{y}, \mathbf{X}\right\} \sim \operatorname{gamma}((1+20) / 2,(3.678+251.775) / 2) \\
& \left\{\boldsymbol{\beta} \mid \boldsymbol{y}, \mathbf{X}, \sigma^{2}\right\} \sim \operatorname{mvn}\left(.952 \times \widehat{\boldsymbol{\beta}}_{\mathrm{ols}}, .952 \times \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

where

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left(\begin{array}{rrrr}
0.55 & -0.55 & -0.15 & 0.15 \\
-0.55 & 1.10 & 0.15 & -0.30 \\
-0.15 & 0.15 & 0.05 & -0.05 \\
0.15 & -0.30 & -0.05 & 0.10
\end{array}\right) \quad \hat{\boldsymbol{\beta}}_{\mathrm{ols}}=\left(\begin{array}{r}
-0.068 \\
2.945 \\
2.844 \\
1.729
\end{array}\right)
$$

FTO example: Bayes in R

```
## data dimensions
n <- nrow(X)
p <- ncol(X)
## prior parameters
nu0 <- 1
s20 <- summary(lm(y~-1+X))$sigma^2
g <- n
## posterior calculations
Hg <- (g/(g+1)) * X%*%solve(t(X)%*%X)%*%t(X)
SSRg <- t(y)%*%( diag(1,nrow=n) - Hg ) %*%y
Vbeta <- g*solve(t(X)%*%X)/(g+1)
Ebeta <- Vbeta%*%t(X)%*%y
## simulate sigma^2 and beta
## may need to install the mvtnorm package, for rmvnorm()
library("mvtnorm")
set.seed(4)
s2.post <- 1/rgamma(5000, (nu0+n)/2, (nu0*s20+SSRg)/2 )
beta.post <- t( sapply(s2.post, function(s2val){
    rmvnorm(1, Ebeta, s2val*Vbeta)}
    ) )
```


FTO example: Bayes in R

```
> # look at the first few samples
> s2.post[1:5]
[1] 11.940216 15.281855 15.821894 8.062999 10.385588
> beta.post[1:5,]
[1,] -0.4473916 4.1394091 2.918340 0.8798302
[2,] 2.1962233 0.9645979 1.444978 2.2662295
[3,] 1.6564342 0.4438559 2.907225 1.5375880
[4,] 0.3876347 1.0801567 2.357214 2.5752063
[5,] -0.4976167 3.2976243 2.004742 2.5915040
> # posterior quantiles for betas
> t(apply(beta.post,2,quantile,probs=c(.5,.025,.975)))
    50% 2.5% 97.5%
[1,] -0.06185524 -5.2449633 5.203937
[2,] 2.75532364 -4.4390185 10.172409
[3,] 2.71534342 1.1521791 4.293707
[4,] 1.63590630 -0.6553404 3.840388
> # compare with the OLS estimates
> cbind(coef(fit.ols), confint.default(fit.ols))
    2.5 % 97.5 %
(Intercept) -0.06821632 -2.8558671 2.719434
xg 2.94485495 -0.9974786 6.887189
xa 2.84420729 2.0036989 3.684716
xg:xa 1.72947648 0.5408182 2.918135
```


FTO example: Bayes in R

Why are the estimates similar but the intervals so different? Here are the prior and posterior for σ;

The 'best guess' estimate is $\hat{\sigma}=\sigma_{0}=1.91$ - but the prior also supports much larger values - with which the data don't strongly disagree.

FTO example: Bayes in R

Numerical confirmation of the same thing; the posterior quantiles for σ^{2}, and σ.

```
> quantile(s2.post,probs=c(.025,.5,.975))
    2.5% 50% 97.5%
    7.244054 12.613746 24.430451
> quantile(sqrt(s2.post),probs=c(.025,.5,.975))
    2.5% 50% 97.5%
2.691478 3.551584 4.942717
```

Can examine the posterior for any quantity of interest in the same straightforward manner, given a large sample from the posterior.

Posterior distributions

Summarizing the genetic effect

Genetic effect $=\mathbb{E}[y \mid$ age,$+/-]-\mathbb{E}[y \mid$ age, $-/-]$
$=\left[\left(\beta_{1}+\beta_{2}\right)+\left(\beta_{3}+\beta_{4}\right) \times\right.$ age $]-\left[\beta_{1}+\beta_{3} \times\right.$ age $]$
$=\beta_{2}+\beta_{4} \times$ age

Numerical approximations

The Monte Carlo method is important for Bayesian work;
Large sample (points) to estimate posterior (contours)

θ_{1}
With a large sample from some distribution - i.e. the posterior - we can approximate any property of that distribution. It does not matter if how we get the sample.

Numerical approximations

Here's one way; (the Gibbs Sampler - in two examples)

Gibbs updates parameters 'one at a time', using $\pi\left(\theta_{1} \mid \theta_{2}\right)$, then $\pi\left(\theta_{2} \mid \theta_{1}\right)$. The sequence of samples $\boldsymbol{\theta}^{(s)}$ (a Markov Chain) are dependent, but the posterior is covered appropriately.

Numerical approximations

Algebra for the same thing; the posterior is

$$
\pi\left(\theta_{1}, \theta_{2} \mid \mathbf{Y}\right) \propto f\left(\mathbf{Y} \mid \theta_{1}, \theta_{2}\right) \times \pi\left(\theta_{1}, \theta_{2}\right)
$$

and is usually intractable. But it is equivalent to

$$
\pi\left(\theta_{1}, \theta_{2} \mid \mathbf{Y}\right)=p\left(\theta_{2} \mid \mathbf{Y}\right) \times p\left(\theta_{1} \mid \theta_{2}, \mathbf{Y}\right)
$$

and conditional $p\left(\theta_{1} \mid \theta_{2}, \mathbf{Y}\right)$ may be more readily-available.
Gibbs uses just the conditionals, iterating between these steps:

$$
\begin{aligned}
\theta_{1}^{(s)} & \sim p\left(\theta_{1} \mid \theta_{2}^{(s-1)}, \mathbf{Y}\right) \\
\theta_{2}^{(s)} & \sim p\left(\theta_{2} \mid \theta_{1}^{(s)}, \mathbf{Y}\right)
\end{aligned}
$$

to produce the sequence

$$
\left(\theta_{1}^{(0)}, \theta_{2}^{(0)}\right),\left(\theta_{1}^{(1)}, \theta_{2}^{(1)}\right), \ldots,\left(\theta_{1}^{(s)}, \theta_{2}^{(s)}\right), \ldots
$$

- If the run is long enough $(s \rightarrow \infty)$, this sequence is a sample from $\pi\left(\theta_{1}, \theta_{2} \mid \mathbf{Y}\right)$, no matter where you started
- For more parameters, update each θ_{k} in turn, then start again

MCMC: with Stan

Stan does all these steps for us;

- Specify a model, including priors, and tell Stan what the data are
- Stan writes code to sample from the posterior, by 'walking around' - actually it runs the No U-Turn Sampler, a more
- Stan runs this code, and reports back all the samples
- The rstan package lets you run chains from R
- Some modeling limitations - no discrete parameters - but becoming very popular; works well with some models where other software would struggle
- Requires declarations (like $C++$) - unlike R - so models require a bit more typing...

MCMC: with Stan

A first attempt at the FTO example, running Stan from within R;

```
cat(file="FTOexample.stan", "
```

data \{
int n; //the number of observations
int p; //the number of columns in the model matrix
real $y[n] ; / /$ the response

real g; // Zellner scale factor
vector [p] mu; // Zellner prior mean (all zeros)
matrix[p,p] XtXinv; // information matrix
real sigma; // std dev'n, assumed known
\}
parameters \{
vector [p] beta; //the regression parameters
\}
transformed parameters \{
vector[n] linpred;
cov_matrix[p] Sigma;
linpred = X*beta;
for (j in 1:p) \{
for (k in 1:p)\{

MCMC: with Stan

```
        Sigma[j,k] = g*sigma^2*XtXinv[j,k];
        }
    }
}
model {
    beta ~ multi_normal(mu, Sigma);
    y ~ normal(linpred, sigma);
}
")
# do the MCMC, store the results
library("rstan")
stan1 <- stan(file = "FTOexample.stan", data = list(
    n=n,p=p, y=y, X=X, g=n, mu=rep(0,p), XtXinv=solve(crossprod(X)),
    sigma=sqrt(s20)
    ), iter = 100000, chains = 1, pars="beta")
```

- Most of the work involves writing a model file (though our 'model' is only two lines!)
- We use 100,000 iterations - which takes only a few seconds

MCMC: with Stan

What it produces, and how it compares to exact calculation;

```
> print(stan1)
Inference for Stan model: FTOexample.
1 chains, each with iter=1e+05; warmup=50000; thin=1;
post-warmup draws per chain=50000, total post-warmup draws=50000.
    mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
beta[1] -0.07 0.01 1.39 -2.86 -0.99 -0.06 0.0.86
beta[2] 2.82 0.02 1.98 -1.02 1.47 2.79 2.79 4.13 
beta[3] 2.71 0.00 0.42 1.90 2.43 2.71 2. 2.99 
beta[4] 1.64 0.01 0.60 0.46 1.24 1.65 2.05 2.05 2.80 12721 
lp__ -39.55 0.01 1.43 -43.13 -40.25 -39.22 -38.49 -37.77 16421 1
```

Samples were drawn using NUTS(diag_e) at Tue Aug 29 16:15:18 2017. For each parameter, $n_{\text {_eff }}$ is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

```
> round( cbind(Ebeta, sqrt(diag(Vbeta*s20))), 2)
```

 [,1] [,2]
 (Intercept) -0.06 1.39
xg $2.80 \quad 1.96$
xa $\quad 2.71 \quad 0.42$
xg:xa 1.650 .59

MCMC: with Stan

Now the full version, with the inverse-gamma prior on σ^{2};

```
cat(file="FTOexample.stan", "
data {
    int n; //the number of observations
    int p; //the number of columns in the model matrix
    real y[n]; //the response
    matrix[n,p] X; //the model matrix
    real g; // Zellner scale factor
    vector[p] mu; // Zellner prior mean (all zeros)
    matrix[p,p] XtXinv; // information matrix
}
parameters {
    vector[p] beta; //the regression parameters
    real invsigma2; //the standard deviation
}
transformed parameters {
    vector[n] linpred;
    cov_matrix[p] Sigma;
    real sigma;
    linpred = X*beta;
    sigma = 1/sqrt(invsigma2);
    for (j in 1:p){
```


MCMC: with Stan

```
        for (k in 1:p){
            Sigma[j,k] = g*sigma^2*XtXinv[j,k];
            }
    }
}
model {
    beta ~ multi_normal(mu, Sigma);
    y ~ normal(linpred, sigma);
    invsigma2 ~ gamma(0.5, 1.839);
}
")
# do the MCMC, store the results
library("rstan")
stan2 <- stan(file = "FTOexample.stan",
data = list(n=n,p=p, y=y, X=X, g=n, mu=rep(0,p), XtXinv=solve(crossprod(X)) ),
iter = 100000, chains = 1, pars=c("beta","sigma"))
```


MCMC: with Stan

And comparing the output again;

```
> print(stan2)
```

Inference for Stan model: FTOexample.
1 chains, each with iter=1e+05; warmup=50000; thin=1;
post-warmup draws per chain=50000, total post-warmup draws=50000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
beta[1]	-0.09	0.02	2.66	-5.32	-1.85	-0.08	1.65	5.13	15022	1
beta[2]	2.84	0.03	3.73	-4.46	0.38	2.84	5.29	10.25	14829	1
beta[3]	2.72	0.01	0.80	1.14	2.19	2.71	3.25	4.29	15065	1
beta[4]	1.64	0.01	1.12	-0.60	0.90	1.63	2.38	3.85	14780	1
sigma	3.62	0.00	0.59	2.69	3.20	3.55	3.95	4.97	18325	1
lp_-	-42.49	0.01	1.65	-46.59	-43.34	-42.15	-41.27	-40.32	15016	1

> round(t(apply(cbind(beta.post, sqrt(s2.post)), 2,

+ function $(x)\{c(m=m e a n(x), s d=s d(x)$, quantile($x, c(0.025,0.5,0.975)))\})$, 2) m sd 2.5\% 50\% 97.5\%
$[1]-,0.05 \quad 2.57-5.14-0.04 \quad 5.07$
$\begin{array}{llllll}{[2,]} & 2.77 & 3.62 & -4.38 & 2.76 & 9.90\end{array}$
$\begin{array}{lllllll}{[3,]} & 2.70 & 0.77 & 1.17 & 2.70 & 4.23\end{array}$
$[4] \quad 1.661 .09-,0.50 \quad 1.66 \quad 3.83$
$\begin{array}{llllll}{[5,]} & 3.50 & 0.54 & 2.63 & 3.43 & 4.74\end{array}$

MCMC: with Stan

To see where the the 'chain' went...
$>$ traceplot (stan2)

beta[4]

beta[2]

sigma

chain

MCMC: summary so far

- Stan - and other similar software - may look like overkill for this 'conjugate' problem, but Stan can provide posteriors for almost any model
- The 'modeling' language is modeled on R
- Users do have to decide how long a chain to run, and how long to 'burn in' for at the start of the chain. These are not easy to answer! We'll see some diagnostics in later sessions

Bonus: what if the model's wrong?

Different types of violation-in decreasing order of how much they typically matter in practice

- Just have the wrong data (!) i.e. not the data you claim to have
- Observations are not independent, e.g. repeated measures on same mouse over time
- Mean model is incorrect
- Error terms do not have constant variance
- Error terms are not Normally distributed

Wrong model: dependent outcomes

- Observations from the same mouse are more likely to be similar than those from different mice (even if they have same age and genotype)
- SBP from subjects (even with same age, genotype etc) in the same family are more likely to be similar than those in different familes - perhaps unmeasured common diet?
- Spatial and temporal relationships also tend to induce correlation

If the pattern of relationship is known, can allow for it - typically in "random effects modes" - see later session.

If not, treat results with caution! Precision is likely over-stated.

Wrong model: mean model

Even when the scientific background is highly informative about the variables of interest (e.g. we want to know about the association of Y with \boldsymbol{x}_{1}, adjusting for $\boldsymbol{x}_{2}, \boldsymbol{x}_{3} \ldots$) there is rarely strong information about the form of the model

- Does mean weight increase with age? age ${ }^{2}$? age ${ }^{3}$?
- Could the effect of genotype also change non-linearly with age?

Including quadratic terms is a common approach - but quadratics are sensitive to the tails. Instead, including "spline" representations of covariates allows the model to capture many patterns.

Including interaction terms (as we did with $x_{i, 2} \times x_{i, 3}$) lets one covariate's effect vary with another.
(Deciding which covariates to use is addressed in the Model Choice session.)

Wrong model: non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to measure, i.e. more variables. Or perhaps the FTO variant affects weight regulation - again, more variance.

- Having different variances at different covariate values is known as heteroskedasticity
- Unaddressed, it can result in over- or under-statement of precision

The most obvious approach is to model the variance, i.e.

$$
\begin{aligned}
Y_{i} & =\beta^{T} x_{i}+\epsilon_{i}, \\
\epsilon_{i} & \sim \operatorname{Normal}\left(0, \sigma_{i}^{2}\right)
\end{aligned}
$$

where σ_{i} depends on covariates, e.g. $\sigma_{\text {homozy }}$ and $\sigma_{\text {heterozy }}$ for the two genotypes.

Of course, these parameters need priors. Constraining variances to be positive also makes choosing a model difficult in practice.

Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or non-constant variance is available - but it relies on interest in linear 'trends'. Formally, we can define parameter

$$
\boldsymbol{\theta}=\operatorname{argmin} \mathbb{E}_{x}\left[\left(\mathbb{E}_{y}[y \mid x]-\mathbf{X}^{t} \boldsymbol{\theta}\right)^{2}\right],
$$

i.e. the straight line that best-captures random-sampling, in a least-squares sense.

- This 'trend' can capture important features in how the mean y varies at different x
- Fitting extremely flexible Bayesian models, we get a posterior for $\boldsymbol{\theta}$
- The posterior mean approaches $\widehat{\boldsymbol{\beta}}_{\text {ols }}$, in large samples
- The posterior variance approaches the 'robust’ sandwich estimate, in large samples (details in Szpiro et al, 2011)

Robust standard errors (in Bayes)

The OLS estimator can be written as $\widehat{\boldsymbol{\beta}}_{\text {ols }}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}=$ $\sum_{i=1}^{n} c_{i} y_{i}$, for appropriate c_{i}.

True variance $\operatorname{Var}[\widehat{\beta}]=\quad \sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}\left[Y_{i}\right]$
Robust estimate $\widehat{\operatorname{Var}}_{R}[\widehat{\beta}]=\sum_{i=1}^{n} c_{i}^{2} e_{i}^{2}$
Model-based estimate $\widehat{\operatorname{Var}}_{M}[\widehat{\beta}]=\operatorname{Mean}\left(e_{i}^{2}\right) \sum_{i=1}^{n} c_{i}^{2}$,
where $e_{i}=y_{i}-\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}}_{\text {ols }}$, the residuals from fitting a linear model.
Non-Bayesian sandwich estimates are available through R's sandwich package - much quicker than Bayes with a veryflexible model. For correlated outcomes, see the GEE package for generalizations.

Wrong model: Non-Normality

This is not a big problem for learning about population parameters;

- The variance statements/estimates we just saw don't rely on Normality
- The central limit theorem means that $\widehat{\beta}$ ends up Normal anyway, in large samples
- In small samples, expect to have limited power to detect non-Normality
- ... except, perhaps, for extreme outliers (data errors?)

For prediction - where we assume that outcomes do follow a Normal distibution - this assumption is more important.

Summary

- Linear regressions are of great applied interest
- Corresponding models are easy to fit, particularly with judicious prior choices
- Assumptions are made - but a well-chosen linear regression usually tells us something of interest, even if the assumptions are (mildly) incorrect

