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Introduction

In this lecture we will consider the Bayesian modeling of binomial
data.

The analysis of allele specific expression data will be used to
motivate the binomial model.

Conjugate priors will be described in detail.

Sampling from the posterior will be emphasized as a method for
flexible inference.
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Bayes Theorem Recap
• We derive the posterior distribution via Bayes theorem:

p(θ|y) =
Pr(y |θ)× p(θ)

Pr(y)
. (1)

• The denominator:

Pr(y) =

∫
Pr(y |θ)× p(θ)dθ

is a normalizing constant to ensure the RHS of (1) integrates to 1
(we assume a continuous parameter θ).

• More colloquially:

Posterior ∝ Likelihood × Prior
= Pr(y |θ)× p(θ)

since in considering the posterior we only need to worry about
terms that depend on the parameter θ.
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Overview of Bayesian Inference
• Simply put, to carry out a Bayesian analysis one must specify a

likelihood (probability distribution for the data) and a prior (beliefs
about the parameters of the model). And then do some
computation... and interpretation...

• The approach is therefore model-based, in contrast to
approaches in which only the mean and the variance of the data
are specified (e.g., weighted least squares).

• To carry out inference, integration is required, and a large fraction
of the Bayesian research literature focusses on this aspect.

• Bayesian summaries:
1. Estimation: marginal posterior distributions on parameters of

interest.
2. Hypothesis Testing: Bayes factors giving the evidence in the data

with respect to two or more hypotheses.
3. Prediction: via the predictive distribution.

• These three objectives will now be described in the context of a
binomial model.
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Elements of Bayes Theorem for a Binomial Model
• We assume independent responses with a common “success”

probability θ.
• In this case, the contribution of the data is through the binomial

probability distribution:

Pr(Y = y |θ) =

(
N
y

)
θy (1− θ)N−y (2)

and tells us the probability of seeing Y = y , y = 0,1, ...,N given
the probability θ.

• For fixed y , we may view (2) as a function of θ – this is the
likelihood function.

• The maximum likelihood estimate (MLE) is that value

θ̂ = y/n

that gives the highest probability to the observed data,
i.e. maximizes the likelihood function.
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Figure 1: Binomial distributions for two values of θ with N = 10.
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Figure 2: Binomial likelihoods for values of y = 5 (left) and y = 10 (right),
with N = 10. The MLEs are indicated in red.
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The Beta Distribution as a Prior Choice for Binomial θ

• Bayes theorem requires the likelihood, which we have already
specified as binomial, and the prior.

• For a probability 0 < θ < 1 an obvious candidate prior is the
uniform distribution on (0,1): but this is too restrictive in general.

• The beta distribution, beta(a,b), is more flexible and so may be
used for θ, with a and b specified in advance, i.e., a priori. The
uniform distribution is a special case with a = b = 1.

• The form of the beta distribution is

p(θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

for 0 < θ < 1, where Γ(·) is the gamma function1.
• The distribution is valid2 for a > 0,b > 0.

1Γ(z) =
∫∞

0 tz−1e−t dt
2A distribution is valid if it is non-negative and integrates to 1
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The Beta Distribution as a Prior Choice for Binomial θ

• How can we think about specifying a and b?
• For the normal distribution the parameters µ and σ2 are just the

mean and variance, but for the beta distribution a and b have no
such simple interpretation.

• The mean and variance are:

E[θ] =
a

a + b

var(θ) =
E[θ](1− E[θ])

a + b + 1
.

Hence, increasing a and/or b concentrates the distribution about
the mean.

• The quantiles, e.g. the median or the 10% and 90% points, are
not available as a simple formula, but are easily obtained within
software such as R using the function qbeta(p,a,b).
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Figure 3: Beta distributions, beta(a, b), the red lines indicate the means.
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Samples to Summarize Beta Distributions

• Probability distributions can be investigated by generating
samples and then examining histograms, moments and
quantiles.

• In Figure 4 we show histograms of beta distributions for different
choices of a and b.
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Figure 4: Random samples from beta distributions; sample means as red
lines.
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Samples for Describing Weird Parameters

• So far the samples we have generated have produced
summaries we can easily obtain anyway.

• But what about functions of the probability θ, such as the odds
θ/(1− θ)?

• Once we have samples for θ we can simply transform the
samples to the functions of interest.

• We may have clearer prior opinions about the odds, than the
probability.

• The histogram representation of the prior on the odds θ/(1− θ)
when θ is beta(10,10).
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Figure 5: Samples from the prior on the odds θ/(1− θ) with θ ∼ beta(10, 10),
the red line indicates the sample mean.
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Issues with Uniformity
We might think that if we have little prior opinion about a parameter
then we can simply assign a uniform prior, i.e. a prior

p(θ) ∝ const.

There are two problems with this strategy:
• We can’t be uniform on all scales since, if φ = g(θ):

pφ(φ)︸ ︷︷ ︸
Prior for φ

= pθ(g−1(φ))︸ ︷︷ ︸
Prior for θ

×
∣∣∣∣ dθdφ

∣∣∣∣︸ ︷︷ ︸
Jacobian

and so if g(·) is a nonlinear function, the Jacobian will be a
function of φ and hence not uniform.

• If the parameter is not on a finite range, an improper distribution
will result (that is, the form will not integrate to 1). This can lead
to an improper posterior distribution, and without a proper
posterior we can’t do inference.
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Are Priors Really Uniform?

• We illustrate the first (non-uniform on all scales) point.
• In the binomial example a uniform prior for θ seems a natural

choice.
• But suppose we are going to model on the logistic scale so that

φ = log

(
θ

1− θ

)
is a quantity of interest.

• A uniform prior on θ produces the very non-uniform distribution
on φ in Figure 6.

• Not being uniform on all scales is not necessarily a problem, and
is correct probabilistically, but one should be aware of this
characteristic.
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Log Odds with θ from a beta(1,1)
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Figure 6: Samples from the prior on the odds φ = log[θ/(1− θ)] with
θ ∼ beta(1, 1), the red line indicates the sample mean.
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Posterior Derivation: The Quick Way

• When we want to identify a particular probability distribution we
only need to concentrate on terms that involve the random
variable.

• For example, if the random variable is X and we see a density of
the form

p(x) ∝ exp(c1x2 + c2x),

for constants c1 and c2, then we know that the random variable X
must have a normal distribution.
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Posterior Derivation: The Quick Way

• For the binomial-beta model we concentrate on terms that only
involve θ.

• The posterior is

p(θ|y) ∝ Pr(y |θ)× p(θ)

= θy (1− θ)N−y × θa−1(1− θ)b−1

= θy+a−1(1− θ)N−y+b−1

• We recognize this as the important part of a
beta(y + a,N − y + b) distribution.

• We know what the normalizing constant must be, because we
have a distribution which must integrate to 1.
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Posterior Derivation: The Long (Unnecessary) Way
• The posterior can also be calculated by keeping in all the

normalizing constants:

p(θ|y) =
Pr(y |θ)× p(θ)

Pr(y)

=
1

Pr(y)

(
N
y

)
θy (1− θ)N−y Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1. (3)

• The normalizing constant is

Pr(y) =

∫ 1

0
Pr(y |θ)× p(θ)dθ

=

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0
θy+a−1(1− θ)N−y+b−1dθ

=

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a + b)

• The integrand on line 2 is a beta(y + a,N − y + b) distribution,
up to a normalizing constant, and so we know what this constant
has to be.
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Posterior Derivation: The Long (and Unnecessary)
Way

• The normalizing constant is therefore:

Pr(y) =

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a + b)

• This is a probability distribution, i.e.
∑N

y=0 Pr(y) = 1 with
Pr(y) > 0.

• For a particular y value, this expression tells us the probability of
that value given the model, i.e. the likelihood and prior we have
selected: this will reappear later in the context of hypothesis
testing.

• Substitution of Pr(y) into (3) and canceling the terms that appear
in the numerator and denominator gives the posterior:

p(θ|y) =
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)
θy+a−1(1− θ)N−y+b−1

which is a beta(y + a,N − y + b).
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The Posterior Mean: A Summary of the Posterior
• Recall the mean of a beta(a,b) is a/(a + b).
• The posterior mean of a beta(y + a,N − y + b) is therefore

E[θ|y ] =
y + a

N + a + b

=
y

N + a + b
+

a
N + a + b

=
y
N
× N

N + a + b
+

a
a + b

× a + b
N + a + b

= MLE×W + Prior Mean× (1-W).

• The weight W is

W =
N

N + a + b
.

• As N increases, the weight tends to 1, so that the posterior mean
gets closer and closer to the MLE.

• Notice that the uniform prior a = b = 1 gives a posterior mean of

E[θ|y ] =
y + 1
N + 2

.
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The Posterior Mode
• First, note that the mode of a beta(a,b) is

mode(θ) =
a− 1

a + b − 2
.

• As with the posterior mean, the posterior mode takes a weighted
form:

mode(θ|y) =
y + a− 1

N + a + b − 2

=
y
N
× N

N + a + b − 2
+

a− 1
a + b − 2

× a + b − 2
N + a + b − 2

= MLE×W? + Prior Mode× (1-W?).

• The weight W? is

W? =
N

N + a + b − 2
.

• Notice that the uniform prior a = b = 1 gives a posterior mode of

mode(θ|y) =
y
N
,

the MLE. Which makes sense, right?
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Other Posterior Summaries

• We will rarely want to report a point estimate alone, whether it be
a posterior mean or posterior median.

• Interval estimates are obtained in the obvious way.
• A simple way of performing testing of particular parameter values

of interest is via examination of interval estimates.
• For example, does a 95% interval contain the value θ0 = 0?
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Other Posterior Summaries

• In our beta-binomial running example, a 90% posterior credible
interval (θL, θU) results from the points

0.05 =

∫ θL

0
p(θ|y) dθ

0.95 =

∫ θU

0
p(θ|y) dθ

• The quantiles of a beta are not available in closed form, but easy
to evaluate in R:

y <− 7; N <− 10; a <− b <− 1
qbeta ( c ( 0 . 0 5 , 0 . 5 , 0 . 9 5 ) , y+a ,N−y+b )
[ 1 ] 0.4356258 0.6761955 0.8649245

• The 90% credible interval is (0.44,0.86) and the posterior median
is 0.68.
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Prior Sensitivity
• For small datasets in particular it is a good idea to examine the

sensitivity of inference to the prior choice, particularly for those
parameters for which there is little information in the data.

• An obvious way to determine the latter is to compare the prior
with the posterior, but experience often aids the process.

• Sometimes one may specify a prior that reduces the impact of
the prior.

• In some situations, priors can be found that produce point and
interval estimates that mimic a standard non-Bayesian analysis,
i.e. have good frequentist properties.

• Such priors provide a baseline to compare analyses with more
substantive priors.

• Other names for such priors are objective, reference and
non-subjective.

• We now describe another approach to specification, via
subjective priors.
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Choosing a Prior, Approach One
• To select a beta, we need to specify two quantities, a and b.
• The posterior mean is

E[θ|y ] =
y + a

N + a + b
.

• Viewing the denominator as a sample size suggests a method for
choosing a and b within the prior.

• We need to specify two numbers, but rather than a and b, which
are difficult to interpret, we may specify the mean
mprior = a/(a + b) and the prior sample size Nprior = a + b

• We then solve for a and b via

a = Nprior ×mprior

b = Nprior × (1−mprior).

• Intuition: a is like a prior number of successes and b like the prior
number of failures.
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Choosing a Prior, Approach One
An Example:
• Suppose we set Nprior = 5 and mprior = 2

5 . It is as if we saw 2
successes out of 5.

• Suppose we obtain data with N = 10 and y
N = 7

10 .
• Hence W = 10/(10 + 5) and

E[θ|y ] =
7

10
× 10

10 + 5
+

2
5
× 5

10 + 5

=
9

15
=

3
5
.

• Solving:

a = Nprior ×mprior = 5× 2
5

= 2

b = Nprior × (1−mprior) = 5× 3
5

= 3

• This gives a beta(y + a,N − y + b) = beta(7 + 2,3 + 3) posterior.
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Beta Prior, Likelihood and Posterior
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Figure 7: The prior is beta(2,3) the likelihood is proportional to a binomial(7,3)
and the posterior is beta(7+2,3+3).
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Choosing a Prior, Approach Two

• An alternative convenient way of choosing a and b is by
specifying two quantiles for θ with associated (prior) probabilities.

• For example, we may wish Pr(θ < 0.1) = 0.05 and
Pr(θ > 0.6) = 0.05.

• The values of a and b may be found numerically.
• For example, we may solve

[p1 − Pr(θ < q1|a,b)]2 + [p2 − Pr(θ < q2|a,b)]2 = 0 (4)

for a,b.
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Beta Prior Choice via Quantile Specification

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

θ

B
et

a 
D

en
si

ty

Figure 8: beta(2.73,5.67) prior with 5% and 95% quantiles highlighted.
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Bayesian Sequential Updating
• We show how probabilistic beliefs are updated as we receive

more data.
• Suppose the data arrives sequentially via two experiments:

1. Experiment 1: (y1,N1).
2. Experiment 2: (y2,N2).

• Prior 1: θ ∼ beta(a,b).
• Likelihood 1: y1|θ ∼ binomial(N1, θ).
• Posterior 1: θ|y1 ∼ beta(a + y1,b + N1 − y1).
• This posterior forms the prior for experiment 2.
• Prior 2: θ ∼ beta(a?,b?) where a? = a + y1, b? = b + N1 − y1.
• Likelihood 2: y2|θ ∼ binomial(N2, θ).
• Posterior 2: θ|y1, y2 ∼ beta(a? + y2,b? + N2 − y2).
• Substituting for a?,b?:

θ|y1, y2 ∼ beta(a + y1 + y2,b + N1 − y1 + N2 − y2).
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Bayesian Sequential Updating

• Schematically:

(a,b)→ (a + y1,b + N1−y1)→ (a + y1 + y2,b + N1−y1 + N2−y2)

• Suppose we obtain the data in one go as y? = y1 + y2 successes
from N? = N1 + N2 trials.

• The posterior is

θ|y? ∼ beta(a + y?,b + N? − y?),

which is the same as when we receive in two separate instances.
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Predictive Distribution
• Suppose we see y successes out of N trials, and now wish to

obtain a predictive distribution for a future experiment with M
trials.

• Let Z = 0,1, ...,M be the number of successes.
• Predictive distribution:

Pr(z|y) =

∫ 1

0
p(z, θ|y)dθ

=

∫ 1

0
Pr(z|θ, y)p(θ|y)dθ

=

∫ 1

0
Pr(z|θ)p(θ|y)dθ

where we move between lines 2 and 3 because z is conditionally
independent of y given θ.
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Predictive Distribution

• Continuing with the calculation:

Pr(z|y) =

∫ 1

0
Pr(z|θ)× p(θ|y)dθ

=

∫ 1

0

(
M
z

)
θ

z (1− θ)M−z

×
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)
θ

y+a−1(1− θ)N−y+b−1dθ

=

(
M
z

)
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)

∫ 1

0
θ

y+a+z−1(1− θ)N−y+b+M−z−1dθ

=

(
M
z

)
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)

Γ(a + y + z)Γ(b + N − y + M − z)

Γ(a + b + N + M)

for z = 0,1, . . . ,M.
• A likelihood approach would take the predictive distribution as

binomial(M, θ̂) with θ̂ = y/N.
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Predictive Distribution
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Figure 9: Likelihood and Bayesian predictive distribution of seeing
z = 0, 1, . . . ,M = 10 successes, after observing y = 2 out of N = 20
successes (with a = b = 1).
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Predictive Distribution
• The posterior and sampling distributions won’t usually combine

so conveniently.
• In general, we may form a Monte Carlo estimate of the predictive

distribution:

p(z|y) =

∫
p(z|θ)p(θ|y)dθ

= Eθ|y [p(z|θ)]

≈ 1
S

S∑
s=1

p(z|θ(s))

where θ(s) ∼ p(θ|y), s = 1, ...,S, is a sample from the posterior.
• This provides an estimate of the predictive distribution at the

point z.
• Alternatively, we may sample from p(z|θ(s)) a large number of

times to reconstruct the predictive distribution, i.e.:

θ(s)|y ∼ p(θ|y), s = 1, . . . ,S Sample from posterior
z(s)|θ(s) ∼ p(z|θ(s)), s = 1, . . . ,S Sample from predictive
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Difference in Binomial Proportions

• It is straightforward to extend the methods presented for a single
binomial sample to a pair of samples.

• Suppose we carry out two binomial experiments:

Y1|θ1 ∼ binomial(N1, θ1) for sample 1
Y2|θ2 ∼ binomial(N2, θ2) for sample 2

• Interest focuses on θ1 − θ2, and often in examing the possibitlity
that θ1 = θ2.

• With a sampling-based methodology, and independent beta
priors on θ1 and θ2, it is straightforward to examine the posterior
p(θ1 − θ1|y1, y2).
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Difference in Binomial Proportions
• Savage et al. (2008) give data on allele frequencies within a

gene that has been linked with skin cancer.
• It is interest to examine differences in allele frequencies between

populations.
• We examine one SNP and extract data on Northern European

(NE) and United States (US) populations.
• Let θ1 and θ2 be the allele frequencies in the NE and US

population from which the samples were drawn, respectively.
• The allele frequencies were 10.69% and 13.21% with sample

sizes of 650 and 265, in the NE and US samples, respectively.
• We assume independent beta(1,1) priors on each of θ1 and θ2.
• The posterior probability that θ1 − θ2 is greater than 0 is 0.12

(computed as the proportion of the samples θ(s)
1 − θ

(s)
2 that are

greater than 0), so there is little evidence of a difference in allele
frequencies between the NE and US samples.
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Binomial Two Sample Example

θ1

Fre
que

ncy

0.08 0.12 0.16

0
500

100
0

150
0

θ2

Fre
que

ncy

0.10 0.15 0.20 0.25

0
500

100
0

150
0

θ1−θ2

Fre
que

ncy

−0.15 −0.05 0.05

0
500

100
0

150
0

Figure 10: Histogram representations of p(θ1|y1), p(θ2|y2) and
p(θ1 − θ2|y1, y2). The red line in the right plot is at the reference point of zero.
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Bayes Factors for Hypothesis Testing
• The Bayes factor provides a summary of the evidence for a

particular hypothesis (model) as compared to another.
• The Bayes factor is

BF =
Pr(y |H0)

Pr(y |H1)

and so is simply the probability of the data under H0 divided by
the probability of the data under H1.

• Values of BF > 1 favor H0 while values of BF < 1 favor H1.
• Note the similarity to the likelihood ratio

LR =
Pr(y |H0)

Pr(y |θ̂)

where θ̂ is the MLE under H1.
• If there are no unknown parameters in H0 and H1 (for example,

H0 : θ = 0.5 versus H1 : θ = 0.3), then the Bayes factor is
identical to the likelihood ratio.
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Calibration of Bayes Factors

• Kass and Raftery (1995) suggest intervals of Bayes factors for
reporting:

1/Bayes Factor Evidence Against H0

1 to 3.2 Not worth more than a bare mention
3.2 to 20 Positive
20 to 150 Strong
>150 Very strong

• These provide a guideline, but should not be followed without
question.
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Bayes Factors for Binomial Data

An Example:
• For each gene in the ASE dataset we may be interested in

H0 : θ = 0.5 versus H1 : θ 6= 0.5.
• The numerator and denominator of the Bayes factor are:

Pr(y |H0) =

(
N
y

)
0.5y 0.5N−y

Pr(y |H1) =

∫ 1

0

(
N
y

)
θy (1− θ)N−y Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1dθ

=

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a + b)

• We have already seen the denominator calculation, when we
normalized the posterior.
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Values Taken by the Negative Log Bayes Factor, as a
Function of y
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Figure 11: Negative Log Bayes factor as a function of y |θ ∼ Binomial(20, θ)
for y = 0, 1, . . . , 20 and a = b = 1. High values indicate evidence against the
null.
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Bayesian Analysis of the ASE Data
Three approaches to inference:

1. Posterior Probabilities:
• A simple approach to testing is to calculate the posterior probability

that θ < 0.5.
• We can then pick a threshold for indicating worthy of further study,

e.g. if Pr(θ < 0.5|y) < 0.01 or Pr(θ < 0.5|y) > 0.99
2. Bayes Factors:

• Calculating the Bayes factor.
• Pick a threshold for indicating worthy of further study, e.g. if the

Bayes factor is greater than 150.
3. Decision theory:

• Place priors on the null and alternative hypotheses.
• Calculate the posterior odds:

Pr(H0|y)

Pr(H1|y)
=

Pr(y |H0)

Pr(y |H1)
× Pr(H0)

Pr(H1)

Posterior Odds = Bayes Factor× Prior Odds

• Pick a threshold R, so that if the Posterior Odds < R we choose H1.
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Bayesian Analysis of the ASE Data

• In Figure 12 we give a histogram of the posterior probabilities
Pr(θ < 0.5|y) and we see large numbers of genes have
probabilities close to 0 and 1, indicating allele specific expression
(ASE).

• In Figure 13 we plot Pr(θ < 0.5|y) versus the p-values and the
general pattern is what we would expect — small p-values have
posterior probabilities close to 0 and 1.

• The strange lines in this plot are due to the discreteness of the
outcome y .

• In Figure 14 we plot the -Log Bayes Factor against Pr(θ < 0.5|y).
Large values of the former correspond to strong evidence of
ASE; again we see an aggreement in inference, with large values
of the negative log Bayes factor corresponding with Pr(θ < 0.5|y)
close to 0 and 1.
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Posterior Prob of θ < 0.5
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Figure 12: Histogram of 4,844 posterior probabilities of θ < 0.5.
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Figure 13: Posterior probabilities of θ < 0.5 and p-values from exact tests.
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Figure 14: Negative Log Bayes factor versus posterior probabilities of θ < 0.5.
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ASE Example

• Applying a Bonferroni correction to control the family wise error
rate at 0.05, gives a p-value threshold of 0.05/4844 = 10−5 and
111 rejections. More on this later!

• There were 278 genes with Pr(θ < 0.5|y) < 0.01 and 242 genes
with Pr(θ < 0.5|y) > 0.99.

• Following the guideline of requiring very strong evidence, there
were 197 genes with the Bayes factor greater than 150.

• Requiring less stringent evidence, i.e. strong only, there were
359 genes.

• We later consider a formal decision theory approach to testing.
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ASE Output Data
• Below are some summaries from the ASE analysis – we order

with respect to the variable logBFr, which is the reciprocal Bayes
factor (so that high numbers correspond to strong evidence
against the null).

• The postprob variable is the posterior probability of θ < 0.5.

a l l v a l s <− data . frame (Nsum, ysum , pvals , postprob , logBFr )
oBF <− order (− logBFr )
o r d e r a l l v a l s <− a l l v a l s [ oBF , ]
head ( o r d e r a l l v a l s )

Nsum ysum pvals postprob logBFr
4751 437 6 5.340324e−119 1.000000e+00 267.9572
4041 625 97 1.112231e−72 1.000000e+00 161.1355
2370 546 468 8.994944e−69 2.621622e−69 152.2517
2770 256 245 1.127211e−58 2.943484e−59 129.6198
t a i l ( o r d e r a l l v a l s )

Nsum ysum pvals postprob logBFr
824 761 382 0.9422103 0.4567334 −2.086604
2163 776 390 0.9142477 0.4429539 −2.091955
3153 769 384 1.0000000 0.5143722 −2.097079
2860 1076 546 0.6474878 0.3129473 −2.146555
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Conclusions

• Monte Carlo sampling provides flexibility of inference.
• All this lecture considered Binomial sampling, for which there is

only a single parameter. For more parameters, prior specification
and computing becomes more interesting...as we shall see.

• Multiple testing is considered in Lecture 7.
• For estimation and with middle to large sample sizes,

conclusions from Bayesian and non-Bayesian approaches often
coincide.

• For testing it’s more complex, as discussed in Lecture 9.
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Conclusions

Benefits of a Bayesian approach:
• Inference is based on probability and output is very intuitive.
• Framework is flexible, and so complex models can be built.
• Can incorporate prior knowledge!
• If the sample size is large, prior choice is less crucial.

Challenges of a Bayesian analysis:
• Require a likelihood and a prior, and inference is only as good as

the appropriateness of these choices.
• Computation can be daunting, though software is becoming

more user friendly and flexible (later we will use INLA).
• One should be wary of model becoming too complex – we have

the technology to contemplate complicated models, but do the
data support complexity?
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