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Overview

Just the key points

from a large sub-

ject...

• What is Bayes’ Rule, a.k.a. Bayes’ Theorem?
• What is Bayesian inference?
• Where can Bayesian inference be helpful?
• How does it differ from frequentist inference?

Note: other literature contains many pro- and anti-Bayesian
polemics, many of which are ill-informed and unhelpful. We will
try not to rant, and aim to be accurate.

Further Note: There will, unavoidably, be some discussion of
epistemology, i.e. philosophy concerned with the nature and
scope of knowledge. But...
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Overview

Using a spade for some jobs

and shovel for others does

not require you to sign up

to a lifetime of using only

Spadian or Shovelist philos-

ophy, or to believing that

only spades or only shovels

represent the One True Path

to garden neatness.

There are different ways of tackling statistical problems, too.
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Bayes’ Theorem

Before we get to Bayesian statistics, Bayes’ Theorem is a result

from probability. Probability is familiar to most people through

games of chance;
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Bayes’ Theorem

These ideas occur naturally in genetics;

‘Mendelian inheritance’ means that, at conception, a biological
coin toss determines which parental alleles are passed on.
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Bayes’ Theorem

These ideas occur naturally in genetics;

The probability of being ‘identical by descent’ at any locus
depends on the pedigree’s genotypes, and structure.

1.5



Bayes’ Theorem

In most studies, “random” means sampling from a population;
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Each person randomly-chosen to be genotyped could be AA/Aa/aa,
with particular probabilities. Here, having at least one copy of the
‘a’ allele happens with probability 0.32+0.04=0.36, i.e. 36%.
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Bayes’ Theorem

Traits can also be random;

In a density function, we get the probability of certain sets (e.g.

of a randomly-selected adult SBP >170mmHg or <110mmHg)

by evaluating the corresponding area.
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Bayes’ Theorem

There are ‘rules’ of probability. Denoting the density at outcome

y as p(y);

• The total probability of all possible outcomes is 1 - so

densities integrate to one;∫
Y
p(y)dy = 1,

where Y denotes the set of all possible outcomes

• For any a < b in Y,

P[Y ∈ (a, b) ] =
∫ b

a
p(y)dy

• For general events;

P[Y ∈ Y0 ] =
∫
Y0

p(y)dy,

where Y0 is some subset of the possible outcomes Y

(For discrete events, replace integration by addition if you prefer)
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Bayes’ Theorem

For two random variables, the density is a surface;
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... where the total ‘volume’ is 1, i.e.
∫
X ,Y p(x, y)dxdy = 1.
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Bayes’ Theorem

To get the probability of outcomes in a region we again integrate;
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Bayes’ Theorem

For continuous variables (say systolic and diastolic blood pres-
sure) think of conditional densities as ‘slices’ through the
distribution;

Formally,

p(x|y = y0) = p(x, y0)/
∫
X
p(x, y0)dx

p(y|x = x0) = p(x0, y)/
∫
Y
p(x0, y)dy,

and we often write these as

just p(x|y), p(y|x). Also,

the marginal densities (shaded

curves) are given by

p(x) =
∫
Y
p(x, y)dy

p(y) =
∫
X
p(x, y)dx.
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Bayes’ Theorem

Bayes’ theorem connects different conditional distributions –

The conditional densities of the

random variables are related

this way;

p(x|y) = p(y|x)
p(x)

p(y)
.

Because we know p(x|y) must

integrate to one, we can also

write this as

p(x|y) ∝ p(y|x)p(x).

Bayes’ Theorem states that the conditional density is propor-

tional to the marginal scaled by the other conditional density.
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Bayesian statistics

So far, nothing’s controversial; Bayes’ Theorem is a rule about
the ‘language’ of probability, that can be used in any analysis
describing random variables, i.e. any data analysis.

Q. So why all the fuss?
A. Bayesian statistics uses more than just Bayes’ Theorem

In addition to describing random variables,

Bayesian statistics uses the ‘language’ of

probability to describe what is known

about unknown parameters.

Note: Frequentist statistics , e.g. using p-values & confidence
intervals, does not quantify what is known about parameters.∗

*many people initially think it does; an important job for instructors of intro

Stat/Biostat courses is convincing those people that they are wrong.
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Bayesian inference

How does it work? Let’s take aim...

Adapted from Gonick & Smith, The Cartoon Guide to Statistics
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http://www.amazon.com/Cartoon-Guide-Statistics-Larry-Gonick/dp/0062731025


Bayesian inference

How does it work? Let’s take aim...
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Bayesian inference

You don’t know the location exactly, but do have some ideas...
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Bayesian inference

You don’t know the location exactly, but do have some ideas...
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Bayesian inference

What to do when the data comes along?
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Bayesian inference

What to do when the data comes along?
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Bayesian inference

Here’s exactly the same idea, in practice;

• During the search for Air France 447, from 2009-2011,
knowledge about the black box location was described via
probability – i.e. using Bayesian inference
• Eventually, the black box was found in the red area
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http://arxiv.org/abs/1405.4720


Bayesian inference

How to update knowledge, as data is obtained? We use;

• Prior distribution: what you know about parameter θθθ,
excluding the information in the data – denoted p(θθθ)
• Likelihood: based on modeling assumptions, how (rela-

tively) likely the data y are if the truth is θθθ – denoted p(y|θθθ)

So how to get a posterior distribution: stating what we know
about βββ, combining the prior with the data – denoted p(βββ|Y)?
Bayes Theorem used for inference tells us to multiply;

p(θθθ|y) ∝ p(y|θθθ) × p(θθθ)

Posterior ∝ Likelihood × Prior.

... and that’s it! (essentially!)

• Given modeling assumptions & prior, process is automatic
• Keep adding data, and updating knowledge, as data becomes

available... knowledge will concentrate around true θθθ

How does this differ from frequentist inference?

1.21



Freq’ist inference (I know, shoot me!)

Frequentist inference, set all a-quiver;
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Freq’ist inference (I know, shoot me!)

Frequentist inference, set all a-quiver;

We ‘trap’ the truth with 95% confidence. Q. 95% of what?
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Freq’ist inference (I know, shoot me!)

The interval traps the truth in 95% of experiments. To define
anything frequentist, you have to imagine repeated experiments.
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Parameters and likelihoods

The unknown ‘parameter’ in this example is the bullseye loca-
tion. More generally, parameters quantify unknown population
characteristics;

• Frequency of a particular SNP variant in that population
• Mean systolic BP in that population
• Mean systolic BP in that population, in those who have a

particular SNP variant

Parameters are traditionally denoted as Greek letters (θ,β ...ξ)
and we write p(y|θ) to define the distribution of Y given a
particular value of θ.

• Varying y, p(y|θ) tells how relatively likely different outcomes
y are for fixed θ

• Varying θ, p(y|θ) (known as a likelihood) describes how
relatively likely a given y is, at different θ

... more detailed examples follow in Session 2.
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Frequentist inference: intervals

In almost all frequentist inference, confidence intervals take the

form θ̂ ± 1.96 × ŝtderr where the standard error quantifies the

‘noise’ in some estimate θ̂ of parameter θ.

Replications (infinitely many)

ΘΘ

10 20 30Your data

True  θθ

(The 1.96 comes from θ̂ following a Normal distribution,

approximately — more later)
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Frequentist inference: intervals

Usually, we imagine running the ‘experiment’ again and again.
Or, perhaps, make an argument like this;

On day 1 you collect data and construct a [valid] 95% confidence
interval for a parameter θ1. On day 2 you collect new data and
construct a 95% confidence interval for an unrelated parameter
θ2. On day 3 ... [the same]. You continue this way constructing
confidence intervals for a sequence of unrelated parameters θ1, θ2,
... 95% of your intervals will trap the true parameter value

Larry Wasserman, All of Statistics

This alternative interpretation is also valid, but...

• ...neither version says anything about whether your data is
in the 95% or the 5%
• ...both versions require you to think about many other

datasets, not just the one you have to analyze. Bayes does
not! ...and this is how scientists tend to think about data
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http://www.stat.cmu.edu/~larry/all-of-statistics/


Back to Bayesian simplicity

Bayesian inference can be made, er, transparent;

Common sense reduced to computation

Pierre-Simon, marquis de Laplace (1749–1827)
Inventor of Bayesian inference
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Back to Bayesian simplicity

The same example; recall posterior ∝ prior × likelihood;
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A Bayesian is one who, vaguely expecting a horse, and catching

a glimpse of a donkey, strongly believes he has seen a mule

Stephen Senn, Statistician & Bayesian Skeptic (mostly)
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But where do priors come from?

An important day at statistician-school?

There’s nothing wrong, dirty, unnatural or even unusual about
making assumptions – carefully. Scientists & statisticians all
make assumptions... even if they don’t like to talk about them.
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But where do priors come from?

Priors come from all data ex-

ternal to the current study,

i.e. everything else.

‘Boiling down’ what subject-

matter experts know/think

is known as eliciting a prior.

It’s not easy (see right) but

here are some simple tips;

• Discuss parameters experts understand – e.g. code variables
in familiar units, make comparisons relative to an easily-
understood reference, not with age=height=IQ=0
• Avoid leading questions (just as in survey design)
• The ‘language’ of probability is unfamiliar; help users express

their uncertainty

Kynn (2008, JRSSA) is a good review, describing many pitfalls.
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https://www.youtube.com/watch?feature=player_detailpage&v=G0ZZJXw4MTA#t=48
http://www.jstor.org/stable/30130739


But where do priors come from?

Ideas to help experts ‘translate’ to the language of probability;

Use 20×5% stickers (Johnson et

al 2010, J Clin Epi) for prior on

survival when taking warfarin

Normalize marks (Latthe et al

2005, J Obs Gync) for prior on

pain effect of LUNA vs placebo

• Typically these ‘coarse’ priors are smoothed. Providing the
basic shape remains, exactly how much you smooth is unlikely
to be critical in practice.
• Elicitation is also very useful for non-Bayesian analyses – it’s

similar to study design & analysis planning
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http://www.sciencedirect.com/science/article/pii/S0895435609001759
http://www.sciencedirect.com/science/article/pii/S0895435609001759
http://onlinelibrary.wiley.com/doi/10.1111/j.1471-0528.2004.00304.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1471-0528.2004.00304.x/full


But where do priors come from?

If the experts disagree? Try it both ways; (Moatti, Clin Trl 2013)

Parmer et al (1996,

JNCI) popularized

the definitions, they

are now common in

trials work

Known as ‘Subjunctive Bayes’; if one had this prior and the data,
this is the posterior one would have. If one had that prior... etc.

If the posteriors differ, what You believe based on the data
depends, importantly, on Your prior knowledge. To convince
other people expect to have to convince skeptics – and note
that convincing [rational] skeptics is what science is all about.
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ctj.sagepub.com/content/early/2013/07/02/1740774513493528.abstract
http://jnci.oxfordjournals.org/content/88/22/1645.long
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When don’t priors matter (much)?

When the data provide a lot more information than the prior,
this happens; (recall the stained glass color-scheme)
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These priors (& many more) are dominated by the likelihood, and
they give very similar posteriors – i.e. everyone agrees. (Phew!)
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When don’t priors matter (much)?

A related idea; try using very flat priors to represent ignorance;
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• Flat priors do NOT actually represent ignorance! Most of
their support is for very extreme parameter values
• For parameters in ‘famous’ regression models, this idea works

okay – it’s more generally known as ‘Objective Bayes’
• For many other situations, it doesn’t, so be careful! (And

also recall that prior elicitation is a useful exercise)
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When don’t priors matter (much)?

Back to having very informative data – now zoomed in;
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The likelihood alone

(yellow) gives the clas-

sic 95% confidence in-

terval. But, to a good

approximation, it goes

from 2.5% to 97.5%

points of Bayesian pos-

terior (red) – a 95%

credible interval.

• With large samples∗, sane frequentist confidence intervals
and sane Bayesian credible intervals are essentially identical
• With large samples∗, it’s actually okay to give Bayesian

interpretations to 95% CIs, i.e. to say we have ≈95%
posterior belief that the true β lies within that range

* and some regularity conditions
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When don’t priors matter (much)?

We can exploit this idea to be ‘semi-Bayesian’; multiply what

the likelihood-based interval says by Your prior.

One way to do this;

• Take point-estimate β̂ and corresponding standard error

stderr, calculate precision 1/stderr2

• Elicit prior mean β0 and prior standard deviation σ; calculate

prior precision 1/σ2

• ‘Posterior’ precision = 1/stderr2 + 1/σ2 (which gives overall

uncertainty

• ‘Posterior’ mean = precision-weighted mean of β̂ and β0

Note: This is a (very) quick-and-dirty approach; we’ll see much

more precise approaches in later sessions.

1.37



When don’t priors matter (much)?

Let’s try it, for a prior strongly supporting small effects, and with
data from an imprecise study;

−1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Parameter

P
ro

ba
bi

lit
y 

D
en

si
ty

●

β̂ − 1.96 × stderr β̂ + 1.96 × stderrβ̂

prior
estimate & conf int
approx posterior

● estimate & conf int

• ‘Textbook’ classical analysis says ‘reject’ (p < 0.05, woohoo!)
• Compared to the CI, the posterior is ‘shrunk’ toward zero;

posterior says we’re sure true β is very small (& so hard to
replicate) & we’re unsure of its sign. So, hold the front page
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When don’t priors matter (much)?

Hold the front page...

does that sound familiar?

Problems with the

‘aggressive dissemination

of noise’ are a current

hot topic...

• In previous example, approximate Bayes helps stop over-
hyping – ‘full Bayes’ is better still, when you can do it
• Better classical analysis also helps – it can note e.g. that

study tells us little about β that’s useful, not just p < 0.05
• No statistical approach will stop selective reporting, or fraud.

Problems of biased sampling & messy data can be fixed (a
bit) but only using background knowledge & assumptions
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http://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off
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Where is Bayes commonly used?

Allowing approximate Bayes, one answer is ‘almost any analysis’.
More-explicitly Bayesian arguments are often seen in;

• Hierarchical modeling

One expert calls the clas-

sic frequentist version

a “statistical no-man’s

land”

• Compex models – for

e.g. messy data, mea-

surement error, multiple

sources of data; fitting

them is possible un-

der Bayesian approaches,

but perhaps still not easy
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Are all classical methods Bayesian?

We’ve seen that, for popular regression methods, with large n,
Bayesian and frequentist ideas often don’t disagree much. This
is (provably!) true more broadly, though for some situations
statisticians haven’t yet figured out the details. Some ‘fancy’
frequentist methods that can be viewed as Bayesian are;

• Fisher’s exact test – its p-value is the ‘tail area’ of the
posterior under a rather conservative prior (Altham 1969)
• Conditional logistic regression – like Bayesian analysis with

particular random effects models (Severini 1999, Rice 2004)
• Robust standard errors – like Bayesian analysis of a ‘trend’,

at least for linear regression (Szpiro et al 2010)

And some that can’t;

• Many high-dimensional problems (shrinkage, machine-learning)
• Hypothesis testing (‘Jeffrey’s paradox’) ...but NOT signifi-

cance testing (Rice 2010... available as a talk)

And while e.g. hierarchical modeling & multiple imputation are
easier to justify in Bayesian terms, they aren’t unfrequentist.
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http://www.jstor.org/stable/2984209
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http://faculty.washington.edu/kenrice/riceihme.pdf


Fight! Fight! Fight!

Two old-timers slugging out the Bayes vs Frequentist battle;

If [Bayesians] would only do as [Bayes] did and publish

posthumously we should all be saved a lot of trouble

Maurice Kendall (1907–1983), JRSSA 1968

The only good statistics is Bayesian Statistics

Dennis Lindley (1923–2013)

in The Future of Statistics: A Bayesian 21st Century (1975)

• For many years – until recently – Bayesian ideas in statistics∗

were widely dismissed, often without much thought
• Advocates of Bayes had to fight hard to be heard, leading to

an ‘us against the world’ mentality – & predictable backlash
• Today, debates tend be less acrimonious, and more tolerant

* and sometimes the statisticians who researched and used them
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http://www.jstor.org.offcampus.lib.washington.edu/stable/2343841
http://www.jstor.org.offcampus.lib.washington.edu/stable/1426315


Fight! Fight! Fight!

But writers of dramatic/romantic stories about Bayesian “heresy”

[NYT] tend (I think) to over-egg the actual differences;

• Among those who actually understand both, it’s hard to find

people who totally dismiss either one

• Keen people: Vic Barnett’s Comparative Statistical Inference

provides the most even-handed exposition I know
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http://www.nytimes.com/2006/12/12/science/12prof.html?pagewanted=all
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471976431.html


Fight! Fight! Fight!

XKCD yet again, on Frequentists vs Bayesians;

Here, the fun relies on setting up a straw-man; p-values are not
the only tools used in a skillful frequentist analysis.

Note: Statistics can be hard – so it’s not difficult to find
examples where it’s done badly, under any system.
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What did you miss out?

Recall, there’s a lot

more to Bayesian

statistics than I’ve

talked about...

These books are all recommended – the course site will feature

more resources. We will focus on Bayesian approaches to ;

• Regression-based modeling

• Testing

• Learning about multiple parameters (testing)

• Combining data sources (imputation, meta-analysis)

– but the general principles apply very broadly.
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Summary

Bayesian statistics:

• Is useful in many settings, and intuitive

• Is often not very different in practice from frequentist

statistics; it is often helpful to think about analyses from

both Bayesian and non-Bayesian points of view

• Is not reserved for hard-core mathematicians, or computer

scientists, or philosophers. Practical uses abound.

Wikipedia’s Bayes pages aren’t great. Instead, start with the

linked texts, or these;

• Scholarpedia entry on Bayesian statistics

• Peter Hoff’s book on Bayesian methods

• The Handbook of Probability’s chapter on Bayesian statistics

• Ken’s website, or Jon’s website
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http://www.scholarpedia.org/article/Bayesian_statistics
http://www.stat.washington.edu/hoff/Book/
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