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Introduction

• With the advent of high-throughput technologies in genomics
there is now the possibility of carrying out millions of tests, and
so the implications of such multiple testing must be carefully
considered.

• In this lecture we will review the rationale for p-values.
• We then explore the connection between p-values and Bayes

factors.
• Multiple testing will be reviewed and a Bayesian perspective

presented.
• An example in the context of a pharmacogenomics GWAS will be

presented.
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Motivating Data Description

• The Vitamin Intervention for Stroke Prevention (VISP) trial is an
NIH-funded, multi-center, double-blind, randomized, controlled
clinical trial.

• More detail in Wakefield et al. (2014).
• The aim is to determine whether a daily intake of high dose folic

acid and vitamins B6 and B12 was associated with
cardiovascular endpoints.

• We examine data on n = 1670 individuals, with 837 randomized
to the high dose and 833 to the low dose.
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Motivating Data Description

• The outcome is the intermediary variable homocysteine level:
high levels in blood are associated with cardiovascular disease.

• In the VISP trial, levels were measured longitudinally but for
simplicity we take as outcome the difference between the
baseline and the first post-baseline measurements: Y will
represent this difference.

• The change was -0.37 µmol/L in the low dose group versus -2.36
µmol/L in the high dose group, i.e., a difference of -1.99 µmol/L
(p < 2× 10−16).
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Marker-Specific Treatment Effects

• An increasingly important venture is examining treatment effects
by marker (e.g. SNP): a particular type of gene-environment
interaction.

• Historically, candidate gene studies were popular, but now
genome-wide scans are also being performed, see Daly (2010)
for a review.

• Pharmacogenomics-related traits: Drug response, susceptibility
to adverse drug reactions,...

• Key Statistical Point: The estimated interactions are based on
subgroups of varying sizes, so that the power varies substantially
across tests.

• In the VISP trial, there are J = 803,122 SNPs and suppose we
define subgroups as having at least one copy of the minor allele.
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Aim: To identify marker-defined populations with improved response
to DAA (for treatment of severe sespis).
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The Statistical Set-Up

• We begin with a very simple situation in which we have a single
parameter of interest θ.

• Assume the null of interest is

H0 : θ = 0

with θ, for example, a treatment difference, or a log odds ratio, or
a log hazard ratio.

• We assume an analysis yields a statistic T for which large values
indicate departures from the null.

• For example, the squared Wald statistic, T = θ̂ 2/V , with V the
asymptotic variance of the MLE1.

• An alternative is the likelihood ratio statistic.

1T=Z 2 where Z is the Z -score
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Types of Testing

• The observed p-value is given by:

p = Pr(T > tobs|H0)

where tobs is a number that is evaluated for the data at hand.
• To report p only, gives a pure significance test.
• A small p-value can arise because:

• H0 is true but we were “unlucky”.
• H0 is not true.

– to decide which explanation is responsible depends crucially
on the prior belief on whether H0 is true or not.

Key question: How small is small?
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Types of Testing

• A test of significance sets a cut-off value (e.g. α = 0.05) and
rejects H0 if p < α.

Again: How to pick α?
• A type I error is to reject H0 when it is true, and a test of

significance controls the type I error (whereas a pure significance
test does not).

• A type II error occurs when H1 is true but H0 is not rejected.
• A hypothesis test goes one step further and specifies an

alternative hypothesis.
• A decision is then taken as to which of H0 and H1 is chosen.
• The celebrated Neyman-Pearson lemma shows that for fixed
α-level the likelihood ratio statistic maximizes the power.

• Wouldn’t it be more reasonable to balance type I and type II
errors?
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The Dangers of Fixed Significance Levels
• Example: Sample, Y1, ...,Yn of size n from normal(θ,1),

H0 : θ = 0, H1 : θ = 1.

Obvious that we should reject H0 for Y > k , a constant.
• The table below illustrates the problems of choosing a fixed α,

regardless of sample size — imbalance in α and β as a function
of n.

n α β k
1 0.01 0.91 2.33

25 0.01 0.0038 0.46
100 0.01 8× 10−15 0.23

• Also: Statistical versus practical significance.
• For both p-values and α levels we need thresholds that decrease

as a function of the sample size n. Pearson (1953, p. 68), “...the
quite legitimate device of reducing α as n increases”.
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Calibrating p-values
• With π0 = Pr(H0), Sellke, Bayarri and Berger (2001) show that:

Pr(H0| data ) ≥
{

1− 1
2.72 p log p

× 1− π0

π0

}−1

(1)

• A small p-value doesn’t translate to a small probability that the
null is not true.
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Why does anyone use p-values?

• Historically, it was usual to carry out well-powered (single)
experiments, and the prior on the alternative was not small.

• With respect to (1) and with π0 = 0.5:
• p-value = 0.05 gives Pr(H0| data ) > 0.29.
• p-value = 0.01 gives Pr(H0| data ) > 0.11.

• Scientists well-calibrated in their own discipline?
• Perhaps, but if you’re going to be subjective, why not be formal

about it?
• Aside: Reason for lack of replication in observational

epidemiology? Along with confounding, data dredging,
measurement error,...
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Calibrating α-Levels

• We want Pr(H0| data ), where “data” corresponds to the event
T > tfix, but to obtain this we must specify alternatives – consider
a simple alternative, say H1 : θ = θ1.

• Then,

Posterior Odds of H0 =
Pr(T > tfix|H0)

Pr(T > tfix|H1)
× Pr(H0)

Pr(H1)

=
α

1− β
× Prior Odds of H0

• For ranking associations (which does not involve the prior odds if
constant across tests): must consider the power, Pr( data |H1).

• For calibration: must consider the prior odds of H0.
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A Sanity Check via a Simple Example

• The model:

Yi |θ ∼iid normal(θ, σ2), σ2 known,

i = 1, . . . ,n.
• The distribution of the MLE is:

θ̂ = Y ∼ normal(θ,V )

with V = σ2/n,

T =
nY

2

σ2 .

• Null and alternative hypotheses are

H0 : θ = 0, H1 : θ 6= 0.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Keyword Prior Conclusions References

A Sanity Check via a Simple Example

• Under H1 assume the prior θ ∼ normal(0,W ).
• Recall from previous lectures that the evidence in the data for a

pair of hypotheses is summarized in the Bayes factor:

BF =
p(y |H0)

p(y |H1)
=

∏n
i=1 dnorm(yi |0, σ2)∫

θ

∏n
i=1 dnorm(yi |θ, σ2)× dnorm(θ|0,W )dθ

where dnorm is shorthand for the density of a normal random
variable.
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A Sanity Check via a Simple Example

• We take W = σ2, which corresponds to the “unit information
prior” of Kass and Wasserman (1995) (this choice not so
important).

• With a prior odds, PO, and ratio of costs R this gives the decision
rule to reject H0:

BF× PO =
√

1 + n × exp
(
−T

2
n

1 + n

)
× PO < R

• Notice how this depends on T and n.
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A Bayesian Test Statistics Threshold

• Rearrangement gives a threshold for rejection of:

T >
2(1 + n)

n
log
(

PO
R

√
1 + n

)
• For relatively large prior odds on the null PO: require T to be

larger (more evidence).
• For relatively large cost of Type II errors R (so that we are averse

to type II error, i.e. missing signals): require T to be smaller (less
evidence).

• Not such a simply summarization for n but, beyond a certain
point, as n gets larger, we require larger T (more evidence).

• The above should be contrasted with the usual frequentist
approach of

T > const

with the constant usually chosen to control the type I error.
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A Bayesian Test Statistic Threshold

• The table below evaluates the probability of rejection given H0.
We assume R = 1.

• For π0 = 0.5 and n = 20,50,100 the thresholds give ≈ 0.05 —
the situation in which this infamous threshold was first derived?

π0 = 0.25 π0 = 0.50 π0 = 0.95
n = 10 0.64 0.10 0.0025
n = 20 0.35 0.074 0.0022
n = 50 0.18 0.045 0.0016

n = 100 0.12 0.031 0.0011
n = 1000 0.030 0.0085 0.00034
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Calibration with p-values

Interesting question: When do Bayes and frequentist p-value
inference coincide?

Consider an approximate Bayes approach. We have parameter of
interest θ with
• Data: MLE θ̂ and standard error

√
V to give likelihood

θ̂|θ ∼ normal(θ,V ),
• Prior: θ ∼ normal(0,W ).
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Calibration with p-values

• The null and alternative hypotheses of interest are

H0 : θ = 0 H1 : θ 6= 0.

• This leads to the approximate Bayes factor (ABF)

ABF =
1√

1− r
exp

(
−Z 2

2
r
)

=

√
V + W

V
exp

(
−Z 2

2
W

V + W

)
where r = W/(V + W ) and Z = θ̂/

√
V .

• Here we write explicitly as a function of Z , with T = Z 2.
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Calibration with p-values
• ABF =

√
V +W

V exp
(
−Z 2

2
W

V +W

)
, which depends on n, because V

does.
• Recall we reject if ABF × PO > threshold R.
• We are trying to find a Bayes factor that does not depend on n, to

correspond with a p-value rule.
• We can reverse engineer a version of ABF that does not depend

on n by taking the prior variance W = K × V , where K is a
constant.

• Then we have approximate Bayes factor

ABFp =
√

1 + K exp
(
−Z 2

2
K

1 + K

)
.

• Important point: No dependence on n, i.e. it depends on Z only,
and therefore on the p-value only.

• If we use the above prior and Bayes factor in multiple tests, then
the rankings of p-values and ABFp will be identical.

• The problem is that this prior makes no sense.
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Calibration with p-values
• The ABF with W not depending on n is consistent (you get the

right answer with a lot of data) if one of H0 or H1 is true, whereas
the “p-value” Bayes factor is not.

• The original ABF can be inverted to give a rule for Z 2 that
depends on PO, R and n (as with the simple example presented
previously).

• For more details, see Wakefield (2009).
• Figure 1 shows the behavior of this rule as a function of the

sample size n, and for different choices of the prior on the
alternative π1 and the ratio of costs of type II to type I errors.

• Larger values on the y axis correspond to less extreme test
statistics.

• The curves have the expected ordering and, as n gets large, a
greater and greater level of evidence is required.

• This is as we would expect because as the sample size
increases we want both Type I and Type II errors to go to zero.
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A Bayes Factor Threshold
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Figure 1: Threshold for rejection, on the log10(p)-value scale, versus sample
size. Notice how the threshold is decreasing with increasing sample size.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Keyword Prior Conclusions References

Multiple Testing

The problem: m tests being carried out, often (in a GWAS context, for
example) with a tiny probability of any association being non-null.

We describe:
• Family-wise error: Bonferroni and Sidak.
• Control of expected number of false discoveries.
• Control of false discovery rate.
• A Bayesian perspective.
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Framework for Multiple Testing
Possibilities with m tests and when K are flagged as requiring further
attention:

Non-Flagged Flagged
H0 A B m0
H1 C D m1

m − K K m

• m0 is the number of true nulls.
• B is the number of type I errors.
• C is the number of type II errors.

Problem: To select a rule that will determine K .

We discriminate between:
• A sensible criterion.
• How the criterion should depend on sample size.
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The Family-Wise Error Rate

Non-Flagged Flagged
H0 A B m0
H1 C D m1

m − K K m

• The family-wise error rate (FWER) is the probability of making at
least one Type I error, i.e.

Pr(B ≥ 1| all H0 true ).

• Let Bi be the event that the i-th null is incorrectly rejected, so that
B = ∪m

i=1Bi is the total number of incorrectly rejected nulls.
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The Family-Wise Error Rate
• The FWER is given by:

FWER = Pr(B ≥ 1| all H0 true ) = Pr (∪m
i=1Bi | all H0 true )

≤
m∑

i=1

Pr(Bi | all H0 true )

= mα?

where α? is the level for each test.
• This is true regardless of whether the tests are independent or

not.
• Bonferroni takes α? = α/m to give FWER ≤ α.
• Example: For control at α = 0.05 with m = 500K tests take
α? = 0.05/500,000 = 10−7.

• Such stringent rules lead to a loss of power, but not ridiculous if
you think there is a reasonable chance that all nulls could be true
(but α should depend on n, in partcular should decrease as n
gets larger and larger).
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Sidak Correction

• If all the tests are independent:

Pr(B ≥ 1) = 1− Pr(B = 0)

= 1− Pr(∩m
i=1B′i )

= 1−
m∏

i=1

Pr(B′i )

= 1− (1− α?)m

• So to achieve FWER = α take α? = 1− (1− α)1/m — the Sidak
correction (Sidak, 1967).

• Example: with m = 500K tests take

α? = 1− (1− 0.05)1/500,000 = 1.03× 10−7.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Keyword Prior Conclusions References

Expected Number of False Discoveries

• We describe an alternative criterion.
• For i = 1, . . . ,m tests let Bi again be the 1/0 random variable

representing whether the null was incorrectly rejected or not, so
that B = ∪m

i=1Bi .
• The expected number of false discoveries (EFD), with

significance level α for each test, is given by

EFD = E [B] =
m∑

i=1

E [Bi ] = mα

if all nulls are true.
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Expected False Discoveries

For m0 true nulls: E [B] = m0α, but m0 is unknown, so all we can say
is

EFD = E [B] ≤ mα.

• In a GWAS context suppose m = 500K and α = 0.05; this gives
EFD ≤ 25,000, so conventional levels will clearly not work!

• We can easily put an upper bound on the EFD.
• For example, if we set α = 1/m the expected number of false

discoveries is bounded by 1.
• With α = 5/m the expected number of false discoveries is

bounded by 5.
• Compare to Bonferroni which controls the FWER via α/m.
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False Discovery Rate

• A very popular criterion is the false discovery rate (FDR).
Non-Flagged Flagged

H0 A B m0
H1 C D m1

m − K K m
• Define the false discovery proportion (FDP) as the proportion of

incorrect rejections:

FDP =

{
B
K if K > 0
0 if K = 0

• Then the false discovery rate (FDR), the expected proportion of
rejected nulls that are actually true nulls, is given by

FDR = E[FDP].
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False Discovery Rate

We describe an algorithm for controlling the FDR.
• Consider the following procedure for independent p-values:

1. Let P(1) < · · · < P(m) denote the ordered p-values.
2. Define li = iα/m and R = max{i : P(i) < li} where α is the value at

which we would like FDR control.
3. Then define the p-value threshold as pT = P(R).
4. Reject all H0i for which Pi ≤ PT .

• Benjamini and Hochberg (1995) show that if this procedure is
applied, then regardless of how many nulls are true (m0) and
regardless of the distribution of the p-values when the null is false

FDR ≤ m0

m
α < α.
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False Discovery Rate

• If all the nulls are true then B = K (all rejections are false) and

FDR = E
[

B
K

]
= 1× Pr(B ≥ 1) = FWER.

• FDR in this form and with extensions, e.g. Storey and Tibshirani
(2003) (description of the q-value methodology) have been
successfully used in the microarrays field, where the number of
non-null associations is not small.

• Unfortunately less successful in a GWAS, because the
proportion of nulls is very close to 1.
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Simulated Example

• We illustrate control by the family-wide error rate (FWER), the
expected number of false discoveries (EFD) and the false
discovery rate (FDR).

• We simulate data for m = 100 tests, with m1 = 5 being non-null.
• True table:

Non-Flagged Flagged
H0 A B 95
H1 C D 5

m − K K 100
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Simulated Example

• We begin by plotting, in Figure 2 the oberved p-values versus
those expected under the null, i.e. i/(m + 1) for i = 1, . . . ,m.

• Hard to interpret, so we truncate the scales in Figure 3.
• Finally we stretch the scale in Figure 4 to show − log10 the

observed p-values versus expected p-values.
• On this scale, a value of 2 corresponds to a p-value of 0.01, and

a value of 3 corresponds to a p-value of 0.001.
• We see that the FWER is very conservative

(p = 0.05/100 = 5× 10−4, or − log10(p) = 3.30) and only flags
one test as being significant.

• The EFD=1 gives a p-value threshold of 0.01, or − log10 p = 2
and picks up all 5 signals.

• The FDR control at 5% gives the green diagonal line and rejects
3 tests.
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Figure 2: Observed versus expected p-values.
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Figure 3: Observed versus expected p-values with truncated scale.
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Bayesian False Discoveries/Non-Discoveries

• In a Bayesian approach, based on Bayes factors we have a rule
to flag a single association as noteworthy if:

Posterior Odds = Bayes Factor× Prior Odds
< R

where R is the ratio of costs of type II to type I errors.
• In a multiple testing situation in which m associations are being

examined nothing, in principle, changes.
• We simply apply the same rule m times, perhaps changing the

priors if we have different priors for different associations.
• The choice of threshold, R, and hence the procedure, does not

depend on: the number of tests being carried out2.

2unless the prior on the null, or the ratio of costs of errors depends on the number of
tests
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Bayesian False Discoveries/Non-Discoveries

• As we have seen, the Bayes factor depends, crucially, on the
sample size.

• In contrast, multiple testing based on p-values
(e.g. Bonferroni/Sidak) does not depend on the sample size but,
crucially, on the number of tests m.

• We have already noted that p-value calibration is very difficult,
and we would like a procedure by which p-value thresholds
decrease to zero with increasing sample size.

• The same would also be required of EFD or FDR based
procedures.
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Bayesian False Discoveries/Non-Discoveries

To summarize in the case of normal test statistics:

The Bayesian decision is based on the Z score and on the
sample size, n, but not on the number of tests, m.

In contrast:

The Bonferroni decision is based on the Z score and on the
number of tests, m, but not on the sample size, n.
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Bayesian Multiple Testing
In a Bayesian context, for a single test:
• If we call a hypothesis noteworthy then Pr(H0| data ) is the

probability of a false discovery.
• If we call a hypothesis not rejected then Pr(H1| data ) is the

probability of a false non-discovery.
• In a multiple-hypothesis testing situation (and assuming ordered

so the first K are rejected), we have

Expected number of false discoveries =
K∑

i=1

Pr(H0i | datai )

Expected number of false non-discoveries =
m∑

i=K +1

Pr(H1i | datai ).

A Key Point: A Bayesian analysis of a single SNP alone, or the same
SNP from multiple SNPs will produce the same decision (assuming
the prior is the same).
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Overall Treatment Effect
• We now describe the methodology for the VISP trial.
• Suppose we have two treatments T = 0/1 (e.g. low dose/high

dose), a continuous response Y and n/2 subjects in each
treatment group, where n is the number of trial participants.

• Let Yi be the response for the i-th individual and Ti the treatment
indicator.

• To estimate the overall treatment effect we fit the model

Yi = α + βTi + εi

with var(εi ) = σ2, so that β is the parameter of interest.
• H0 : β = 0 is the null of interest, i.e. no treatment effect?
• Test statistic:

Z =
β̂

s.e.(β̂)
∼ normal(0,1) under H0

where β̂ = Y HI − Y LO and s.e.(β̂) = σ̂/
√

n.
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Treatment-by-Marker Interactions

• Now consider the situation in which we wish to examine the
treatment effect by marker.

• To be concrete, define the subgroups relative to a recessive
model with S being the number of minor alleles.

• At a generic SNP: S = 0 corresponds to:

No Copies of the Minor Allele

while S = 1 corresponds to:

One or Two Copies of the Minor Allele.
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Treatment-by-Marker Interactions

There are m comparisons of interest, with summary data at marker j ,
as below:

Group
S = 0 S = 1 Sample Size

T = 0 Y 00 Y 01 n/2
T = 1 Y 10 Y 11 n/2

n − ns ns n

Table 1: Summary data at a generic marker, under two treatments T = 0/1;
there are n individuals in total, of which ns are in the group of interest.
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Treatment-by-Marker Interactions
• Si = 0/1 is a group indicator for individual i at a generic SNP.
• For the treatment effect and at each marker we fit the model

Yi = α + βTi + γSi + ∆︸︷︷︸
Interaction

Ti × Si + εi

with var(εi ) = σ2.
• H0 : ∆ = ∆0 is the null of interest, i.e. is there a differential

treatment effect of a certain size at the SNP, e.g. ∆0 = 0, to
compare to the marginal treatment effect.

• Test statistic

Z =
∆̂−∆0

s.e.(∆̂)
∼ normal(0,1) under H0.

• To emphasize, the same 833/837 responses are used in each of
the m comparisons, but they are distributed into the four
treatment × marker cells differently.

• Key Observation: Standard errors will vary considerably across
SNPs.
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VISP Example

• After data cleaning, there were m = 803,122 SNPs on which
data were available, with at least 5 individuals in each treatment
× marker subgroup.

• Suppose we are interested in detecting marker subgroups for
which there is an enhanced effect, i.e. an increased reduction
over the marginal treatment effect.

• Figure 5 shows the standard errors in the VISP trial – large
variability and so the power ranges considerably also.

• Now refresh memory on the Bayesian approach to testing.
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Computation of Bayes Factors

• Recall that

∆̂|∆ ∼ N(∆,V )

∆ ∼ N(∆0,W ).

where
√

V is the standard error of the estimator leads to a simple
form for the Bayes factor:

BF =

√
V + W

V
exp

(
−Z 2

2
W

V + W

)
where

Z =
∆̂−∆0√

V
.
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Bayesian Boundaries

• We again use the Bayes factors as a mechanism by which
Z -score boundaries can be calculated, as a function of the
standard error

√
V .

• The Bayesian Z 2 score threshold is:

Z 2 > z2
B =

(
V + W

W

){
log
(

V + W
V

)
+ 2 log

(
PO
R

)}
to give a threshold which is an explicit function of V , R and PO.

• If the prior odds PO on the null increases, threshold increases:
require more evidence.

• If cost of Type II to Type I errors R increase, threshold
decreases: require less evidence.
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Bayesian Boundaries
• The Bayesian boundary:

Z 2 > z2
B =

(
V + W

W

){
log
(

V + W
V

)
+ 2 log

(
PO
R

)}
.

• Beyond a certain point, as V decreases the Type I error
decreases to zero.

• Specifically, let n denote an appropriate measure of sample size
and V = σ2/n. Then, as n→∞,

z2
B → log

(
1 +

nW
σ2

)
︸ ︷︷ ︸

→∞

+2 log
(

PO
R

)
.

• Relative to a fixed boundary:
• For small n/large standard error the Bayesian approach requires

more evidence because of the low power.
• For large n/small standard error the Bayesian approach requires

more evidence because of the high power and the comparison with
the distribution under HA.
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Figure 5: Histogram of standard errors of the interaction parameter estimates
∆̂ in the VISP study.
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Figure 6: Bayesian Z -score threshold as a function of the standard error. The
Bayesian threshold is based on a prior on the alternative of 0.0001, R = 1
and a prior standard deviation on the interaction effect size of

√
W = 5.1; this

prior gives a 95% interval on ∆ of (-10,10).
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A Priori Operating Characteristics

• Ranking is straightforward with Bayes factors, since the only
choice is the prior on the effect parameter (W ), and inference is
relatively insensitive to this value.

• There is much greater sensitivity to the ratio of costs R and the
prior odds PO.

• Deciding upon values for R and PO is not straightforward, but
only the ratio PO/R is needed.

• We assume R = 1 (equal costs of type I and type II errors) and
π1 = 0.001,0.0001,0.0001.

• For m = 803,122 SNPs this corresponds to expecting 803, 80
and 8 non-null interactions, respectively.

• These signals will not reflect 803, 80, 8 different causal variants
since typically multiple SNPs will tag each causal variant.

• Figure 7 plots various useful operating characteristics.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Keyword Prior Conclusions References

Operating Characteristics
• To determine the EFD and ETD we require specification of the

number of null and non-null signals, which we label as m0 and
m1, respectively (so that m = m0 + m1).

• We take the true number of signals as m1 = 50 so that there are
m0 = 803,072 null signals.

• Then,

EFD = m0 × α
ETD = m1 × (1− β)

where α and β are the type I and type II errors 3.
• We emphasize that in a GWAS in which the fraction of non-null

associations is close to zero, the ETD is highly sensitive to the
choice of m1 (in contrast to EFD, which is insensitive, because it
depends on m0)

3These can be worked under the Bayesian approach as well, and will vary as a
function of the standard error
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Figure 7: Operating characteristics of Bayes/Bonferroni. For Bayes
boundaries R = 1 and “Bayes 1”, “Bayes 2”, “Bayes 3” correspond to priors of
π1 = 0.001, 0001, 00001. Power is to detect a drop of 5 units. For EFD/ETD
we set m1 = 50.
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Operating Characteristics
• The most liberal prior of π1 = 0.001 produces a large number of

type I errors (around 20 for standard errors in the mid-range) and
might be judged to give unacceptably poor performance.

• The most sceptical prior is more conservative than Bonferroni
(with a FWER of 20%) and the prior with π1 = 0.0001 is a
compromise for this choice of m1.

• For example: For a standard error of 1, around 2 false
discoveries would be expected (as in the lower left panel) but
with around 10 more true signals being detected (as seen in the
lower right panel), which seems a reasonable trade-off.

• Note, however, that if we think the number of true signals is
smaller than m1 = 50 then the number of true signals will fall
proportionally.

• For example: At a standard error of 1, if m1 = 5 then we would
only expect to detect a single additional signal, when compared
to the use of Bonferroni.

• Armed with this information we move to an analysis of the VISP
data.
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Motivating Homocysteine Example
• We fitted the interaction model with adjustment for age and

gender.
• The genetic subgroups are defined as having at least one copy

of the minor allele as compared to two copies of the major allele.
• The number in the former subgroup ranges between 21 and

1,564 across SNPs.
• We choose W to give a 95% prior interval for the interactions ∆

of ±10.
• Figure 8 plots the Z -scores versus the standard error, along with

boundary corresponding to a FWER of 20%.
• For both the most conservative prior and the Bonferroni

approach (with a FWER of 20%, which gives a p-value threshold
of 2.5× 10−7) two SNPs are flagged.

• With a FWER of 5% the Bonferroni threshold is 6.2× 10−8 and
results in a single SNP being deemed significant.

• With the more optimistic prior of π1 = 0.0001, a further signal is
flagged (and these are not significant using Bonferroni).



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Keyword Prior Conclusions References

Figure 8: Z -score threshold as a function of the standard error for the VISP
data, ratio of costs of type II to type I errors R = 1 and varying priors on the
alternative of π1 = 0.001, 0001, 00001 (to give Bayes 1, Bayes 2, Bayes 3
boundaries).
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Flagged Signals

SNP ID Chrom ∆̂ ŝ.e.(∆̂) p-value Bayes Factor Post Prob
rs3736238 17 -6.68 1.38 1.5× 10−8 9.3× 10−7 0.99

rs16893296 6 -4.61 0.85 7.1× 10−8 3.9× 10−6 0.96
rs1739317 6 -3.23 0.64 4.0× 10−7 2.3× 10−5 0.81

rs11819196 10 -1.72 0.37 3.5× 10−6 2.9× 10−4 0.26

Table 2: The SNPs in the VISP study that had posterior probabilities on the
alternative of greater than 0.25 (R = 3), with a prior on the alternative of
π1 = 0.0001 and under the equal variances recessive genetic model.
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VISP Results

• Figure 9 plots the posterior probabilities of the alternative
hypothesis (with π1 = 0.0001) versus chromosomal position (this
is similar to a Manhattan plot in which − log10 p-values are
plotted against position).

• The 3 SNPs that fall outside of the boundary in Figure 8 are
highlighted.

• The strongest signal is for SNP rs3736238 on chromosome 17.
For this SNP there are 42 individuals in the M = 1 subgroup, of
which 24 and 18 are in the low and high dose groups,
respectively.

• The probability of this signal being a false discovery is 0.01
under our assumed prior.
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Figure 9: Posterior probability on the alternative plotted versus genomic
position for the VISP data. The prior on the alternative is π1 = 0.0001.
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VISP Example

• Figure 10 shows that the p-values and Bayes factors differ in
their rankings due to the differing sample sizes/standard errors.

• The points are color-coded by the size of the standard error and
we see that the points with larger standard errors are
consistently ranked as giving greater evidence for the alternative
under the Bayesian approach.

• This behavior occurs here because of the association between
the Z 2 boundary and the standard error for these priors, as
shown in Figure 6.

• Specifically, the majority of the signals occur in that portion of the
latter curve in which the Bayes boundary lies below the FWER
boundary.

• Figure 11 shows an example in which distinctly different behavior
occurs.
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Figure 10: -log10BFs vs -log10 p-values, color-coded by standard error with
W = 10.
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Figure 11: -log10BFs vs -log10 p-values, color-coded by standard error with
W = 3.
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VISP Example

• A related interesting exercise is to simulate the distribution of
observed effect sizes under our assumed priors (on both the
proportion of non-null signals and the effect sizes), using the
observed distribution of standard errors.

• The distribution of effect sizes is N(∆,V + W ) for the non-null
signals and normal(0,V ) for the null signals.

• We can then evaluate the power, and hence determine the
number of signals we would expect to detect given our prior
assumptions.
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VISP Example

• For the VISP data, with a proportion of non-null signals
π1 = 0.0001, R= 1 and 95% range for the effect sizes of ±10, we
would expect to see 52 true positives and one false positive.

• Given we only observed three non-null signals, this implies that
either the range of effect sizes (as defined through W ) was too
wide or, more probably, that our estimate of π1 was optimistic.

• Repeating this exercise with π1 = 0.00001 gives 5 true positives
and close to 0 false positives, which is more consistent with that
which was observed.

• Figure 12 gives the posterior probabilities for this prior.
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Figure 12: Posterior probability on the alternative plotted versus genomic
region for the VISP data. The prior on the alternative is the more
conservative choice of π1 = 0.00001.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Keyword Prior Conclusions References

VISP Discussion

• We chose the value π1 = 0.0001 by examining frequentist
summaries before the real data analysis was performed.

• We define π1 as the proportion of SNPs that would be associated
with the disease, if the power were 1.

• After the data are analyzed we can, for those SNPs declared as
null (i.e. all but 3 SNPs in the VISP trial), sum up the posterior
probabilities of being non-null, and this gives the expected
number of false non-discoveries .

• For the VISP data, this expected number is 24.6 so that we are
missing a large number of signals, with lack of power being the
major issue.
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VISP Discussion

• For the three significant signals, at the 0.5 threshold, the
probabilities of the null being true are 0.01, 0.04 and 0.19, so that
the expected number of false discoveries is 0.24.

• Taking the threshold of significance as 0.25 gives an additional
SNP as being declared significant.

• The sum of the posterior probabilities of the null is 0.98 in this
case and so, under this prior, we would expect one of the reports
signals to be a false discovery.
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Sensitivity to π1

• The posterior probability of the alternative is highly dependent on
the choice of prior on the null π0, and a sensitivity analysis is
always warranted.

• Ideally, rather than fix π0 as we have done, one would estimate of
π0 from the totality of data (i.e. over all m SNPs), but this is
difficult because in a GWAS the proportion of detectable null
signals is typically very close to 1; there may be many thousands
of small but non-zero effects, but the power to detect these
signals is low, with the usual sample sizes.
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Sensitivity to π1

• In other contexts, such as the analysis of gene expression data
(Storey and Tibshirani, 2003), the data can be used to estimate
π0 more reliably.

• If the same prior on the null is used for all the tests, the rankings
based on the Bayes factor will remain the same as the ranking
based on posterior probabilities.

• However, calibrating the Bayes factors to the probability scale
requires prior probabilities.

• Within a sensitivity exercise one may include an analysis in which
any available information on particular SNPs may be included.
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An Alternative Approach to Significance
• The posterior probability (and the Z -score threshold) is equally

sensitive to R as to π1.
• The form of the latter suggests that all we need to do is to fix

PO/R.
• As mentioned above, in the VISP analysis we selected π1 by

examining the frequentist operating characteristics.
• An alternative method (Wakefield, 2012) for obtaining PO/R is to

specify a value for the Z 2 boundary, z2
B , at a particular V (for

example, at a MAF and sample size that one is familiar with) and
then solve for U = log(PO/R) via

Û =
z2

B ×W
2(V + W )

− 1
2

log
(

V + W
V

)
.

• With this value of Û = PO/R one can then proceed to use

Z 2 > z2
B =

(
V + W

W

){
log
(

V + W
V

)
+ 2 log(Û)

}
across the observed range of standard errors.
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Incorporating Prior Information

• We now briefly describe a method for assigning priors to SNPs
based on substantive information.

• In collaboration with scientists at IARC and at the Department of
Computer Science at Sheffield University a method had been
developed that searches through PubMed abstracts for
pre-assigned keywords and key concepts.

• More details in Johansson et al. (2012).
• This information is used to assign prior probabilities of

association with the phenotype for each SNP of interest.
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Incorporating Prior Information

• Three prior groups were assigned, depending on the number of
hits.

• The priors can subsequently be incorporated with the
association results of GWAS using the previously described
Bayesian framework.

• The method has acronym: Adjusting Association Priors with Text
(AdAPT).

• Details of the method can be found in Johansson et al. (2012).
• The AdAPT software is available here:

http://services.gate.ac.uk/lld/gwas/service/config
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Incorporating Prior Information in a GWAS

• SNPs are assigned to a group, based on the number of
keywords that were found to be associated with this SNP.

• For the priors, keywords were ranked by priority: In the:
• 1st group G1: were words specific to lung cancer (eg, smoking,

lung carcinoma).
• 2nd group G2: were more general words specifcally relevant to lung

cancer (smoking, nicotine, non-small cell carcinoma),
• 3rd group G3: were more general words (carcinogen, DNA

damage).
• Each SNP was then placed in one of three prior categories:

1. C1 = {not G1, not G2, not G3}.
2. C2 = { at least one of G1,G2,G3 but not all }.
3. C3 = {G1,G2,G3}.
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Incorporating Prior Information in a GWAS

• We then assigned prior odds (PO) to Pr(H0|Cj )/Pr(H1|Cj ).
Specifically for the three categories, the PO was set to 7874 (C1),
899 (C2) and 224 (C3).

• These were used in the analysis to obtain the posterior odds on
H0:

Pr(H0|y ,Cj )

Pr(H1|y ,Cj )
=

Pr(y |H0)

Pr(y |H1)
×

Pr(H0|Cj )

Pr(H1|Cj )
.
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Incorporating Prior Information

• First, the power was evaluated for the three categories, see
Figure 13.

• The method was tested by comparing rankings of known
susceptibility alleles in a previous lung cancer GWAS of 1989
cases and 2625 controls in 6 central European countries.

• The rankings of 6 SNPs that have been independently replicated
in multiple studies were calculated.
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Figure 13: Power as a function of MAF, for three prior categories, for a single
prior, and for a p-value approach.
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Incorporating Prior Information: Proof of Principle
Results

• The results below show that known susceptibility SNPs were
ranked more highly by AdAPT BFDPs than by p-values.

• Rankings based on initial data with informative priors for the
Bayes rankings:

SNP p-value ranking Bayes ranking
rs8034191 1 1
rs1051730 2 2
rs4324798 4 5

rs401681 73 30
rs2736100 76 32
rs3117582 121 34
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Incorporating Prior Information: New Study Results
• Subsequently, the method was applied on a novel two phase

GWAS of oral cancer, with 791 cases and 7,012 controls
included in the discovery phase.

• A Bayes threshold on the null of 0.8 was assigned and 6 SNPs
passed this test.

• One of these was already replicated, the replication was carried
out for the remaining 5 AdAPT ranked SNPs in 1,046 cases and
2,131 controls from 4 case-control studies.

• rs991316, located in the ADH gene region of 4q23, displayed a
statistically significant association with oral cancer risk in the
replication phase (per-rare-allele log additive p-value
=2.5× 10−3).

• This SNP was ranked 76th in the p-value list and so would not
have been selected to carry forward, but was ranked 4th in the
BFDP list.

• The combined odds ratio associated with having one additional
rare allele was 0.84 (95% CI: 0.75–0.94).
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Conclusions

• Bayesian analysis is attractive in a multiple testing context, but
the results are very sensitive to the prior on the proportion of
nulls, π0.

• Fast methods are required for large m (e.g. in a GWAS context)
of tests, which is still a drawback for many Bayesian approaches.

• Priors can be made a function of characteristics of the SNP
(e.g. non-synonymous, previously implicated,...). See Johansson
et al. (2012) for an example.

• Such priors can have a major impact on rankings and posterior
probabilities.
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Conclusions

• In genetics, journals are sympathetic to Bayes analyses (not true
in all disciplines).

• A huge GWAS enterprise used p-values and Bayes factors to
assess significance (Wellcome Trust Case Control Consortium,
2007).

• Stephens and Balding (2009) provide a review of Bayesian
approaches in GWAS.
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