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Introduction
In this lecture we will discuss Bayesian modeling in the context of
Generalized Linear Models (GLMs).

This discussion will include the addition of random effects, i.e. the
class of Generalized Linear Mixed Models (GLMMs).

Estimation via the quick INLA technique will be demonstrated, along
with its R implementation.

An approximation technique that is useful in the context of Genome
Wide Association Studies (GWAS) (in which the number of tests is
large) will also be introduced.

A complex mixture model for ASE will be described, to illustrate some
of the flexibility of Bayes modeling.

The accompanying R code allows the analyses presented here to be
replicated.
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Motivating Example: Logistic Regression

• We consider case-control data for the disease Leber Hereditary
Optic Neuropathy (LHON) disease with genotype data for marker
rs6767450:

CC CT TT Total
x = 0 x = 1 x = 2

Cases 6 8 75 89
Controls 10 66 163 239
Total 16 74 238 328

• Let x = 0,1,2 represent the number of T alleles, and p(x) the
probability of being a case, given x copies of the T allele.
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Motivating Example: Logistic Regression

• For such case-control data one may fit the multiplicative odds
model:

p(x)

1− p(x)
= exp(α)× exp(θx),

with a binomial likelihood.
• Interpretation:

• exp(α) is of little interest given the case-control sampling.
• exp(θ) is the odds ratio describing the multiplicative change in risk

for one T allele versus zero T alleles.
• exp(2θ) is the odds ratio describing the multiplicative change in risk

for two T alleles versus zero T alleles.
• Odds ratios approximate the relative risk for a rare disease.

A Bayesian analysis adds a prior on α and θ.
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Motivating Example: FTO Data Revisited

Recall
• Y = weight
• xg = fto heterozygote ∈ {0,1}
• xa = age in weeks ∈ {1,2,3,4,5}

We will examine the fit of the model

E[Y |xg, xa] = β0 + βgxg + βaxa + βintxgxa,

with independent normal errors, and compare with a Bayesian
analysis.
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Motivating Example: RNA Seq with Replicates

• We report an experiment carried out in a collaboration with
Caitlin Connelly and Josh Akey (UW Genome Sciences), see
Connelly et al. (2014) for further details.

• Start with two haploid yeast strains (individuals).
• From these we obtain RNA-Seq data, where we isolate RNA

from the two individuals, fragment and sequence it using
next-generation sequencing, and map the sequencing reads
back to the genome to generate RNA levels in the form of counts
of the number of sequencing reads mapping at each gene.

• Also mate the two haploid yeast strains together to form a diploid
hybrid. We again isolate RNA, fragment, and sequence it.

• Then take advantage of polymorphisms between the two strains
in order to map reads to either of the two haploid individuals,
giving us counts for the number of reads mapping to either one of
the parental genomes in the diploid hybrid for each gene.
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Motivating Example: RNA Seq with Replicates

• We are interested in two questions from this data. First, we want
to look for evidence of trans effects at each gene; in biological
terms, this means that polymorphisms located far from the gene
are responsible for differences in RNA levels.

• To detect this, look for genes where the difference between RNA
levels in the haploids differs from the difference between RNA
levels for the two parental strains in the diploid.

• Also interested in looking for cis effects, meaning polymorphisms
near the gene itself are responsible for differences in RNA levels.

• We can detect cis effects as a difference in the count of reads
mapping to each of the parental strains in the diploid at a gene.
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Motivating Example: RNA Seq Data, Statistical Model
• There are two replicates and so for each of N genes we obtain

two sets of counts.
• For the diploid hybrid let Yij be the number of A alleles for gene i

and replicate j , and Nij is the total number of counts, so that
Nij − Yij is the number of T alleles j = 1,2.

• We fit a hierarchical logistic regression model starting with first
stage:

Yij |Nij ,pij ∼ binomial(Nij ,pij )

so that pij is the probability of seeing an A read for gene i and
replicate j .

• At the second stage:

logit pij = θi + εij

where εij ∼ normal(0, σ2) represent random effects that allow for
excess-binomial variation.

• In the model θi is a parameter of interest – if a (say) 95%
posterior interval estimate contains 0 then we have evidence of
cis effects.
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Generalized Linear Models

• Generalized Linear Models (GLMs) provide a very useful
extension to the linear model class.

• GLMs have three elements:
1. The responses follow an exponential family.
2. The mean model is linear in the covariates on some scale.
3. A link function relates the mean of the data to the covariates.

• In a GLM the response yi are independently distributed and
follow an exponential family1, i = 1, . . . ,n.

• Examples: Normal, Poisson, binomial.

1so that the distribution is of the form p(yi |θi , α) = exp({yiθi − b(θi )}/α+ c(yi , α)),
where θi and α are scalars
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Generalized Linear Models
• The link function g(·) provides the connection between the mean
µ = E[Y ] and the linear predictor xβ, via

g(µ) = xβ,

where x is a vector of explanatory variables and β is a vector of
regression parameters.

• For normal data, the usual link is the identity

g(µ) = µ = xβ.

• For binary data, a common link is the logistic

g(µ) = log
(

µ

1− µ

)
= xβ.

• For Poisson data, a common link is the log

g(µ) = log (µ) = xβ.
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Bayesian Modeling with GLMs

• For a generic GLM, with regression parameters β and a scale
parameter α, the posterior is

p(β, α|y) ∝ p(y |β, α)× p(β, α).

• An immediate question is: How to specify a prior distribution
p(β, α)?

• How to perform the computations required to summarize the
posterior distribution (including the calculation of Bayes factors)?
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Bayesian Computation

Various approaches to computation are available:
• Conjugate analysis — the prior combines with likelihood in such

a way as to provide analytic tractability (at least for some
parameters).

• Analytical Approximations — asymptotic arguments used
(e.g. Laplace).

• Numerical integration.
• Direct (Monte Carlo) sampling from the posterior, as we have

already seen.
• Markov chain Monte Carlo — very complex models can be

implemented, for example with WinBUGS, JAGS or Stan.
• Integrated nested Laplace approximation (INLA). Cleverly

combines analytical approximations and numerical integration:
we illustrate the use of this method in some detail.
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Integrated Nested Laplace Approximation (INLA)

• The homepage of the INLA software is here:
http://www.r-inla.org/home

• There are also lots of example links at this website.
• The fitting of many common models is described here:

http://www.r-inla.org/models/likelihoods
• INLA can fit GLMs, GLMMs and many other useful model

classes.

http://www.r-inla.org/home
http://www.r-inla.org/models/likelihoods
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INLA for the Linear Model

• The model is

Y = E[Y |xg, xa] = β0 + βgxg + βaxa + βintxgxa + ε

where ε|σ2 ∼iid N(0, σ2).
• This model has five parameters: the four fixed effects are
β0, βg, βa, βint and the error variance is σ2, which is known as a
hyperparameter (note that in inla inference is reported for the
precision σ−2).

• In general, posterior distributions can be summarized graphically
or via numerical summaries.

• In Figures 1 and 2 give posterior marginal distributions for the
fixed effects and hyperparameter σ−2, respectively, under an
analysis with relatively flat priors.
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Figure 1: Marginal distributions of the intercept and regression coefficients.
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Figure 2: Marginal distribution of the error precision.
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INLA for the Linear Model

• As with a non-Bayesian analysis, model checking is important
and in Figure 3 we present a number of diagnostic plots.

• Plots:
(a) Normality of residuals? Sample size is quite small.
(b) Is the relationship with age linear?
(c) Mean variance relationship?
(d) Overall fit.

• For these data, the model assumptions look reasonable.
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FTO Diagnostic Plots
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Figure 3: Plots to assess model adequacy: (a) Normal QQ plot, (b) residuals
versus age, (c) residuals versus fitted, (d) fitted versus observed.
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Bayes Logistic Regression

• The likelihood is

Y (x)|p(x) ∼ Binomial( N(x),p(x) ), x = 0,1,2.

• Logistic link:

log
(

p(x)

1− p(x)

)
= α + θx

• The prior is
p(α, θ) = p(α)× p(θ)

with
• α ∼ normal(µα, σα) and
• θ ∼ normal(µθ, σθ). where µα, σα, µθ, σθ are constant that are

specified to reflect prior beliefs.
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Prior Choice for Positive Parameters

• It is convenient to specify lognormal priors for a positive
parameter, for example exp(β) (the odds ratio) in a logistic
regression analysis.

• One may specify two quantiles of the distribution, and directly
solve for the two parameters of the lognormal.

• Denote by θ ∼ LogNormal(µ, σ) the lognormal distribution for a
generic positive parameter θ with E[log θ] = µ and
var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of
this prior.

• In our example, θ = exp(β).
• Then it is straightforward to show that

µ = log(θ1)

(
zq2

zq2 − zq1

)
−log(θ2)

(
zq1

zq2 − zq1

)
, σ =

log(θ1)− log(θ2)

zq1 − zq2

.

(1)
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Prior Choice for Positive Parameters

• As an example, suppose that for the odds ratio eβ we believe
there is a 50% chance that the odds ratio is less than 1 and a
95% chance that it is less than 5; with q1 = 0.5, θ1 = 1.0 and
q2 = 0.95, θ2 = 5.0, we obtain lognormal parameters µ = 0 and
σ = (log 5)/1.645 = 0.98.

• The density is shown in Figure 4.
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Figure 4: Lognormal density with 50% point 1 and 95% point 5.
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Logistic Regression Example

• In the second analysis we specify

α ∼ normal(0,1/0.1)

θ ∼ normal(0,W )

where W is such that the 97.5% point of the prior is log(1.5),
i.e. we believe the odds ratio lies between 2/3 and 3/2 with
probability 0.95.

• The marginal distributions are given in Figure 25
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Logistic Marginal Plots
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Figure 5: Posterior marginals for the intercept α and the log odds ratio θ.
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The RNA-Seq Data: INLA Analysis
• Recall there are two replicates and so for each of N genes we

obtain two sets of counts.
• For the diploid hybrid, let Yij be the number of A alleles for gene i

and replicate j , and Nij is the total number of counts, j = 1,2.
• We fit a hierarchical logistic regression model starting with first

stage:
Yij |Nij ,pij ∼ binomial(Nij ,pij )

so that pij is the probability of seeing an A read for gene i and
replicate j .

• At the second stage:

logit pij = θi + εij

where εij |σ2 ∼ normal(0, σ2) represent random effects that allow
for excess-binomial variation; there are a pair for each gene.

• The θi parameters are taken as fixed effects with relatively flat
priors.

• exp(θi ) is the odds of seeing an A read for gene i .
• Figures 6, 7 and 8 summarize inference.
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Figure 6: Posterior marginals for the first 9 gene effects (compare with zero
for evidence of cis effects). We plot 9 rather than all 10 for display purposes.
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excess-binomial variation.
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Figure 8: Posterior marginal for precision of random effects.
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An Informative Summary for the RNA-Seq Data

• We extract the 95% intervals and posterior medians for the log
odds of being an A allele.

• Comparison with 0 (in Figure 9) gives an indication of cis effects.
• Genes 1, 2, 5, 6, 7 show evidence of cis effects.



Introduction GLMs GLMMs Approximate Bayes Hierarchical ASE Conclusions References

●

●

●

●

●

●

●

●

●

●

−1 0 1 2

2
4

6
8

10

Log Odds

Ge
ne

Figure 9: Posterior marginal intervals for posterior of interest. Genes with
posterior intervals that do not include zero, show evidence of cis effects.
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Approximate Bayes Inference

• Particularly in the context of a large number of experiments, a
quick and accurate model is desirable.

• We describe such a model in the context of a GWAS.
• This model is relevant when the sample size in each experiment

is large.
• We first recap the normal-normal Bayes model.
• Subsequently, we describe the approximation and provide an

example.
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Recall: The Normal-Normal Model
• The model:

• Prior: θ ∼ normal(µ0, τ
2
0 ) and

• Likelihood: Y1, . . . ,Yn|θ ∼ normal(θ, σ2).

• Posterior
θ|y1, . . . , yn ∼ normal(µn, τ

2
n )

where

var(θ|y1, . . . , yn) = τ2
n = [1/τ2

0 + n/σ2]−1

Precision = 1/τ2
n = 1/τ2

0 + n/σ2

and

E[θ|y1, . . . , yn] = µn =
µ0/τ

2
0 + ȳn/σ2

1/τ2
0 + n/σ2

= µ0

(
1/τ2

0

1/τ2
0 + n/σ2

)
+ ȳ

(
n/σ2

1/τ2
0 + n/σ2

)
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A Normal-Normal Approximate Bayes Model

• Consider again the logistic regression model

logit pi = α + xiθ

with interest focusing on θ.
• We require priors for α, θ, and some numerical/analytical

technique for estimation/Bayes factor calculation.
• Wakefield (2007, 2009) considered replacing the likelihood by

the asymptotic distribution of the MLE, to give posterior:

p(θ|θ̂) ∝ p(θ̂|θ)p(θ)

where
• θ̂|θ ∼ normal(θ,V ) – the asymptotic distribution of the MLE,
• θ ∼ normal(0,W ) – the prior on the log RR. Can choose W so that

95% of relative risks lie in some range, e.g. [2/3,1.5].
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Posterior Distribution

• Under this model, the posterior distribution for the log odds ratio
θ is

θ|θ̂ ∼ normal(r θ̂, rV )

where
r =

W
V + W

.

• Hence, we have shrinkage to the prior mean of 0.

• The posterior median for the odds ratio is exp(r θ̂) and a 95%
credible interval is

exp(r θ̂ ± 1.96
√

rV ).

• Note that as W →∞ and/or V → 0 (which occurs as we gather
more data) the non-Bayesian point and interval estimates are
recovered (since r → 1).
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A Normal-Normal Approximate Bayes Model

• We are interested in the hypotheses: H0 : θ = 0, H1 : θ 6= 0 and
evaluation of the Bayes factor

BF =
p(θ̂|H0)

p(θ̂|H1)
.

• Using the approximate likelihood and normal prior we obtain:

Approximate Bayes Factor =
1√

1− r
exp

(
−Z 2

2
r
)
,

with Z = θ̂√
V

, r = W
V+W .
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A Normal-Normal Approximate Bayes Model

• The approximation can be combined with a
Prior Odds = π0/(1− π0) to give

Posterior Odds on H0 =
BFDP

1− BFDP
= ABF× Prior Odds

where BFDP is the Bayesian False Discovery Probability.
• BFDP depends on the power, through r .
• For implementation, all that we need from the data is the Z -score

and the standard error
√

V , or a confidence interval.
• Hence, published results that report confidence intervals can be

converted into Bayes factors for interpretation.
• The approximation relies on sample sizes that are not too small,

so the normal distribution of the estimator provides a good
summary of the information in the data.
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Combination of Data Across Studies
• Suppose we wish to combine data from two studies where we

assume a common log odds ratio θ.
• The estimates from the two studies are θ̂1, θ̂2 with standard

errors
√

V 1 and
√

V 2.
• The Bayes factor is

p(θ̂1, θ̂2|H0)

p(θ̂1, θ̂2|H1)
.

• The approximate Bayes factor is

ABF(θ̂1, θ̂2) = ABF(θ̂1)× ABF(θ̂2|θ̂1) (2)

where

ABF(θ̂2|θ̂1) =
p(θ̂2|H0)

p(θ̂2|θ̂1,H1)

and
p(θ̂2|θ̂1,H1) = Eθ|θ̂1

[
p(θ̂2|θ)

]
so that the density is averaged with respect to the posterior for θ.

• Important Point: The Bayes factors are not independent.
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Combination of Data Across Studies

• This leads to an approximate Bayes factor (which summarizes
the data from the two studies) of

ABF(θ̂1, θ̂2) =

√
W

RV1V2
exp

{
−1

2

(
Z 2

1 RV2 + 2Z1Z2R
√

V1V2 + Z 2
2 RV1

)}
where
• R = W/(V1W + V2W + V1V2)

• Z1 = θ̂1√
V1

and

• Z2 = θ̂2√
V2

are the usual Z statistics.

• The ABF will be small (evidence for H1) when the absolute
values of Z1 and Z2 are large and they are of the same sign.
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Combination of Data Across Studies: The General
Case

• Suppose we have K studies with estimates θ̂k and asymptotic
variances Vk , k = 1, ...,K .

• Assume a common underlying parameter θ.
• The Bayes factor is given by

BFK =
p(θ̂1, . . . , θ̂K |H0)

p(θ̂1, . . . , θ̂K |H1)

=

∏K
k=1(2πVk )−1/2 exp

(
− θ̂2

k
2Vk

)
∫ ∏K

k=1(2πVk )−1/2 exp
(
− (θ̂2

k−θ)
2

2Vk

)
(2πW )−1/2 exp

(
− θ2

2Vk

)
dθ

=

√√√√W

(
W−1 +

K∑
k=1

V−1
k

)
exp

−1
2

(
K∑

k=1

θ̂k

Vk

)2(
W−1 +

K∑
k=1

V−1
k

)−1
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Combination of Studies: The General Case

• The posterior is given by

θ|θ̂1, . . . , θ̂K ∼ normal(µ, σ2)

where

µ =

(
K∑

k=1

θ̂k

Vk

)(
W−1 +

K∑
k=1

V−1
k

)−1

σ2 =

(
W−1 +

K∑
k=1

V−1
k

)−1
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Example of Combination of Studies in a GWAS

• We illustrate how reported confidence intervals can be converted
to Bayesian summaries.

• Frayling et al. (2007) report a GWAS for Type II diabetes.
• For SNP rs9939609:

Pr(H0|data) with prior:
Stage Estimate (CI) p-value − log10 BF 1/5,000 1/50,000
1st 1.27 (1.16–1.37) 6.4× 10−10 7.28 0.00026 0.0026
2nd 1.15 (1.09–1.23) 4.6× 10−5 2.72 0.905 0.990
Combined – – 13.8 8× 10−11 8× 10−10

• Combined evidence is stronger than each separately since the
point estimates are in agreement.

• For summarizing inference the (5%, 50%, 95%) points for the RR
are:

Prior 1.00 (0.67–1.50)
First Stage 1.26 (1.17–1.36)
Combined 1.21 (1.15–1.27)
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Specifics of ASE Experiment

Details of the data:
• Two “individuals” from genetically divergent yeast strains, BY and

RM, are mated to produce a diploid hybrid.
• Three replicate experiments: same individuals, but separate

samples of cells.
• Two technologies: Illumina and ABI SOLiD. Each of a few trillion

cells are processed.
• Pre- and post-processing steps are followed by fragmentation to

give millions of 200–400 base pair long molecules, with short
reads obtained by sequencing.

• Strict criteria to call each read as a match are used, to reduce
read-mapping bias.

• Data from 25,652 SNPs within 4,844 genes.
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Allele Specific Expression via RNA-Seq

Additional data:
• Genomic DNA is sequenced in the diploid hybrid, which has one

copy of each gene from BY and from RM.
• The only difference between the genomic DNA and the main

experiment is that we expect the genomic DNA to always be
present 50:50 (one copy each of BY and RM), whereas for the
main experiment it is only 50:50 if there is no ASE.

• For both genomic DNA and RNA we obtain counts at SNPs, at
each of BY and RM.
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Cartoon of the Experiment

Figure 10: Mapping of RNA short reads to BY and RM.
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Statistical Problem

• Aim of the Experiment: Estimate the proportion of genes that
display ASE.

• Let p be the probability of a map to BY at a particular SNP.
• Additionally, we would like to classify genes into:

• Genes that do not show ASE.
• Genes that show:

• Constant ASE across SNPs.
• Variable ASE across SNPs, i.e. p varies within gene.

Subsequently, we will examine genes displaying ASE to
investigate the mechanism.

• A hierarchical model is feasible since we have within gene and
between gene variability.

• Further, a mixture model is suggested, with a mixture of genes
that do not display ASE (so there p’s are 0.5) and that do display
ASE.
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Summaries for ASE Data
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Figure 11: Summaries for RNA BY/RM yeast data; note that 739 SNP
denominators are >500 and are not plotted.
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Figure 12: Schematic of the hierarchical model.
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Approach to Modelling RNASeq Data

Overview, three models fitted:
1. Model 1: Two component mixture model to filter out aberrant

SNPs using genomic DNA data.
2. Model 2: Using the filtered genomic DNA data, fit a hierarchical

SNP within gene model, to determine the “null” distribution of
counts.
Specifically: “wobble” in p about 0.5, and SNP “wobble” in p
within genes.
Absence of ASE is not experimentally equivalent to
Yi ∼ binomial(Ni ,p = 0.5) because of the steps involved in the
experiment.

3. Model 3: For the RNA Seq data develop a two-component
mixture model where each gene either displays no ASE, or ASE,
with null component determined from the analysis of the genomic
DNA data (Model 2).
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Model 1: Filtering Model for Genomic DNA

Two-component mixture model for SNPs:
1. Majority of SNP counts arise from a beta-binomial distribution

with p “close to” 0.5.
2. Minority of SNP counts arise from a beta-binomial distribution

with p “not close to” 0.5 due to sequencing bias at these SNPs.

• Data: yj and Nj are counts at SNP j for j = 1, ...,m SNPs.
• Note: Ignores gene information – don’t want to impose too much

structure at this point.
• SNPs that are more likely to arise from component 2 are then

removed from further analyses.
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Filtering Model for Genomic DNA
• Stage 1: SNP Count Likelihood:

yj |pj ∼ binomial(Nj ,pj ), j = 1, ...,N.

• Stage 2: Between-SNP Prior:

pj |a,b, c, π0 =

{
beta(a,a) with probability π0
beta(b, c) with probability 1− π0

• Stage 3: Hyperpriors: Constrain b < 1, c < 1 to give U-shaped
beta distribution.

a ∼ lognormal(4.3,1.8)?

b ∼ uniform(0,1)

c ∼ uniform(0,1)

π0 ∼ uniform(0,1)

?80% interval for p : [0.43,0.57]. Separate a,b, c, π0 for each
technology.
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Implementation for Genomic DNA

• Integrate pj from model to give:

yj |a,b, c, π0 ∼ π0×beta-binomial(Nj ,a,a)+(1−π0)×beta-binomial(Nj ,b, c).

• This is a mixture of two distributions:
1. The first distribution is for the majority of signals close to 0.5. The

size of a denotes how close is close.
2. The second distribution is for the minority of aberrant SNPs.
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Implementation for Genomic DNA

• Likelihood:

Pr(y |a, b, c, π0) =
N∏

j=1

(
Nj

Yj

) {
π0

Γ(2a)

Γ(a)2

Γ(yj + a)Γ(Nj − yj + a)

Γ(Nj + 2a)

+ (1− π0)
Γ(b + c)

Γ(b)Γ(c)

Γ(yj + b)Γ(Nj − yj + c)

Γ(Nj + b + c)

}
• Posterior:

p(a,b, c, π0|y) ∝ Pr(y |a,b, c, π0)× p(a)p(b)p(c)p(π0).

• Implementation: Markov chain Monte Carlo.
• Recall: Sequencing bias lead to aberrant SNPs, and these errors

are likely to be repeated in the main experiment.
• SNPs falling in the second mixture component were removed from

further analyses.



Introduction GLMs GLMMs Approximate Bayes Hierarchical ASE Conclusions References

Posterior Distributions

a

Fre
qu

en
cy

260 280 300 320

0
50

10
0

15
0

b

Fre
qu

en
cy

0.60 0.65 0.70 0.75

0
50

10
0

20
0

c

Fre
qu

en
cy

0.60 0.65 0.70

0
50

10
0

20
0

30
0

π0

Fre
qu

en
cy

0.935 0.940 0.945

0
50

10
0

15
0

20
0

Figure 13: Posteriors for genomic filtering model for Illumina platform.
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Posterior Filter
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Figure 14: Posterior probabilities of biased genomic DNA SNPs: 1,295
removed from 25,262.



Introduction GLMs GLMMs Approximate Bayes Hierarchical ASE Conclusions References

Effect of Filtering
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Figure 15: Original and filtered data, for Illumina platform.
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Model 2: Calibration Model for Genomic Data

• With aberrant SNPs removed, the next step is to calibrate the
null component.

• Stage 1: Within-Gene Likelihood:

Yij |pij ∼ binomial(Nij ,pij ).

where pij is the probability of an outcome from the first genetic
background.

• Stage 2: Within-Gene Prior:

pij |αi , βi ∼ beta(αi , βi )

so that αi , βi determine the distribution of variants within gene i .
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Calibration Model for Genomic Data
• αi and βi are not straightforward to interpret.
• We reparameterize (αi , βi )→ (pi ,ei ) with mean and dispersion

parameters (recall αi + βi is a prior sample size):

pi =
αi

αi + βi

ei =
1

1 + αi + βi

• Moments of ASE parameters:

E [pij |pi ,ei ] = pi

var(pij |pi ,ei ) = pi (1− pi )ei

• Moments of data:

E [Yij |pi ,ei ] = Nijpi

var(Yij |pi ,ei ) = Nijpi (1− pi )
[
1 + (Nij − 1)ei

]
• As ei → 0 we approach the binomial model.
• As ei → 1 we have more overdispersion (variability within gene).
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Calibration Model for Genomic data
• Stage 3: Within-Gene Likelihood:

pi |a ∼ beta(a,a)

ei |d ∼ beta(1,d)

Note: prior on within-gene dispersion is monotonic decreasing
from 0 (corresponding to no variability).

• Stage 4: Hyperpriors: Require priors on a > 0,d > 0.
• We take

a ∼ lognormal(4.3,1.8)

d ∼ exponential(0.0001)

• The latter prior determines the within-gene variability within-gene
variability in genomic DNA – chosen by examination of resultant
pij ’s.

• Separate a,d for each technology.
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Figure 16: Posteriors for the RNA-Seq data, Illumina platform.
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Model 3: Model for RNA-Seq Data
• Data are modeled as a two-component mixture: the first “null”

component having a known distribution, from the genomic DNA
analysis on the filtered data.

• Stage 1: Within-Gene Likelihood:

Yij |pij ∼ binomial(Nij ,pij ).

where pij is the probability of an outcome from the first genetic
background.

• Stage 2: Within-Gene Prior:

pij |αi , βi ∼ beta(αi , βi )

so that αi , βi determine the distribution of variants within gene i .
• Stage 3: Between-Gene Prior: We again reparameterize

(αi , βi )→ (pi ,ei ):

pi ,ei |f ,g,h, π0 ∼
{

beta(â, â)× beta(1, d̂) with probability π0
beta(f ,g)× beta(1,h) with probability 1− π0

with â, d̂ from genomic DNA analysis.
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Stage 4: Hyperpriors: Require priors on π0, f > 0,g > 0,h > 0.
• Uniform prior on π0.
• f and g describe beta distribution of pi for genes displaying ASE

– want this distribution to be centered around symmetry.
• Reparameterize as

q =
f

f + g
r =

1
1 + f + g

so that E [pi ] = q, var(pi ) = q(1− q)r .
• Through experimentation:

q ∼ beta(100,100) r ∼ beta(1,20)

• For h, the distribution of within-gene variability in ASE:

h ∼ exponential(0.03).

• Separate f ,g,h for each technology.
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Figure 17: Posteriors for the RNA-Seq data, Illumina platform.
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Figure 18: Comparison of rankings from binomial test and hierarchical model.
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Figure 19: Examples of opposite conclusions: In (b) the p-value said ASE
and Bayes not (large sample size, Bayes allows wobble). In (c) the p-value
said no ASE, Bayes analysis yes.
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Figure 20: Between-gene variability pi and within-gene variability ei .
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Varying ASE within genes

• One mechanism: Imagine a gene with an exon and an intron,
and that we have SNPs in both.

• At each exonic SNP we see approximately the same number of
BY and RM reads.

• Now suppose the intron is not spliced out for the BY allele, but it
is spliced out efficiently for the RM allele. At each intronic SNP
we will still see the same number of BY reads as in the exon
(everything else being equal), but approximately 0 RM reads,
leading to variable ASE across the gene

• In the figure: The “thin” part of the gene (YML024W) is an intron,
while the “thick” part is an exon.

• For the RM allele (magenta) the intron is not spliced out, while it
is mostly spliced out in the BY allele (green).
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Scale
chrXIII:

BY/RM SNPs
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Figure 21: Example of a gene displaying variable ASE within a gene. Green =
RM, magenta = BY.
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Conclusions for Mixture Model

• For the ASE data we used the DNA experiment to calibrate the
prior.

• More details of this experiment and the model can be found in
Skelly et al. (2011).

• Implementation was via Markov chain Monte Carlo, but we had
to write our own code.
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Conclusions

• Computationally GLMs and GLMMs can now be fitted in a
relatively straightforward way.

• INLA is very convenient and is being constantly improved.
• As with all analyses, it is crucial to check modeling assumptions

(and there are usually more in a Bayesian analysis).
• Markov chain Monte Carlo provides an alternative for

computation. WinBUGS is one popular implementation.
• Other MCMC possibilities include: JAGS, BayesX, Stan.
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