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Overview

Rather than

trying to cram

another book’s-

worth of material

into half a single

session...

• Decision theory — saying what we’re interested in

• Testing (again!) and how to motivate it as a decision

problem

Note: while in genetics research, you may not have to make

‘active’ decisions when reporting results – e.g. who to treat –

ideas from decision theory are helpful for deciding which posterior

samples are useful, or not, for others.
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Toolkit so far (& what it can’t do)

Important tools/concepts;

• Prior: what You know about all parameters, external to
study data
• Likelihood: what the data tells You about those parameters
• Posterior: what You know about the parameters, combining

those resources
• Model choice: which sub-models You have more/most

support for
• Model checking: how/whether the data and prior don’t line

up

But these don’t help us to answer;

• Which parameter(s) is/are of particular interest?
• How to choose summaries of Your knowledge about param-

eters?

These are common issues! For example why 95% intervals?
Why the posterior mean? Why shrink some parameters to zero?
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Example: inference for associations

Association means that the distribution of trait (e.g. Y=height)
differs with genotype (SNP G=AA or Aa, or 0/1 copies of ‘a’)

• One measure is difference is the mean,
β = E[Y |G = Aa ]− E[Y |G = aa ]

• Interpret as difference in average Y in those with Aa vs AA
• But could also examine difference in median, i.e. difference

in Y for ‘average’ AA people versus ‘average’ Aa people
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Example: inference for associations

Other concerns about parameter choice, here;

• Is it causal? Confounding by ancestry a concern, also finding
association at a variant in LD with the causal variant(s)
• Can it be estimated robustly-enough? (Means are very

sensitive to extreme values, medians are not)
• Can it be estimated easily-enough? (Linear regression

– which can be implemented quiakly – estimates means.
Median regression is feasible but much less commonly-used)
• Will anyone else be able to understand it?

For now, we assume that β = E[Y |G = Aa ] − E[Y |G = aa ] is a
reasonable choice, and that we’ll report its posterior.

To address what might be a reasonable posterior summary of β,
it’s helpful to consider how bad each summary would be, if/when
it’s wrong.
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Loss functions: intro

‘How bad it would be’ is captured by a loss function – how bad

summary decision d would be, if the truth were β;

Absolute loss Quadratic loss
L(β, d) = |β − d| L(β, d) = (β − d)2
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Loss functions: intro

We only get to choose d — and β is uncertain. Bayesian decision
theory chooses d by minimizing the expected posterior loss;

dB = argmin
d

E[L(β, d)|Y ].

For this green posterior and absolute loss L(β, d) = |β−d|, which
choice of d minimizes the expected loss?

β

−4 −2 0 2 4 6 8 10

d=−2 d=0 d=2 d=4 d=6

This optimal decision dB is called the Bayes rule.
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Loss functions: intro

Why minimize the expected posterior loss?

• Minimizing L(β, d) averaged – sensibly – over uncertainty

• Happy frequentist properties! Using the Bayes rule in

repeated experiments, dBayes minimizes the loss You (i.e.

person with Your prior) would expect to suffer

• Can’t be too awful! Complete class theorems show that,

essentially, any rule that isn’t a Bayes rule will have worse

loss, at least sometimes

If these seem unconvincing/esoteric, also note that any method

of choosing between decisions will have to define and operate

on L(β, d), somehow – so it’s useful to consider different choices.
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Loss functions: intro

A more complex loss function; suppose under-estimates of β are

worse than over-estimates – reasonable if you are predicting e.g.

number of disease cases for resource planning.

β

−4 −2 0 2 4 6 8 10

d=−2 d=0 d=2 d=4 d=6

Compared to the earlier symmetric losses, how does the Bayes

rule change?
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Loss functions: intro

The math of this; (previous example assumes α close to 1)

L(β, d) =

{
α|β − d|, d < β, i.e. under-estimates

(1− α)|β − d|, d > β, i.e. over-estimates
.

The Bayes rule here is to report the α quantile (i.e. α × 100%

percentile) of the posterior

• To set α, ask how much worse it would be to have e.g. one

disease case with no resources, versus wasting resources by

being prepared for one too many cases

• For α=1/2, the scaling is identical for over-estimates and

under-estimates, so we’re back to absolute loss, seen earlier

• More generally, scaling L(β, d) by a positive constant doesn’t

affect the loss, neither does adding a constant – only relative

losses matter

• (...neither does adding any function of β alone)
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Loss functions: intro

For two decisions, we can add together two loss functions;

L(β, dlo, dhi) =

{
α
2|β − dlo|, dlo < β

(1− α
2)|β − dlo|, dlo > β

+

{
(1− α

2)|β − dhi|, dhi < β
α
2|β − dhi|, dhi > β

and for dlo < dhi, this can be re-written as

L(β, dlo, dhi) =
α

2
(dhi − dlo) +

{
|β − dlo|, dlo > β
|β − dhi|, dhi < β

... i.e. trading off the width of the interval for a costlier penalty
for any distance to values of β outside the interval (dlo, dhi).

You may have guessed the Bayes rule already;

(dBlo, d
B
hi) = (α/2,1− α/2) posterior quantiles of β

The tradeoff rate α/s justifies the level of the interval.

• Much more directly than considering replicate studies
• Also beats using α = 0.05 just because everyone else does!
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Which question?

As we’ve seen, decision theory forces us to look carefully at
what our analysis is for – even beyond modeling and other prior
assumptions, which only describe what the truth is, or might be.

Statistical tests can also be understood this way. Some possible
tradeoffs, when considering whether θ = 0, or θ < 0 or θ > 0;

• Strong enough belief that θ is positive to outweigh saying it’s
negative
• Strong enough belief about θ’s direction to outweigh saying

nothing about direction
• Strong enough belief (based on the data, and relevant to the

prior) that θ is non-zero to outweigh saying that it’s zero
• Strong enough belief about θ’s distance from zero to

outweigh saying nothing about its value

These can all give different answers, depending on the details –
and the data.
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Testing: decision theory

A reminder of the ingredients for decision theory;

• Loss function L(θ, d): how bad it would be if the truth

were θ but you took decision d. (Optimists: note we could

equivalently define Utility as −L(θ, d) — how good it would

be – economists do this)

• Expected posterior loss E[L(θ, d) ] – loss for some decision d

averaged over posterior uncertainty

The Bayes rule is the decision d that minimizes E[L(θ, d) ] – but

for testing, d is 0 or 1, so this means checking whether

E[L(θ, d = 0) ] ≤ E[L(θ, d = 1) ],

i.e. do we expect less loss deciding d = 0 or d = 1?
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Testing: first example

Suppose we are assessing whether a variant is harmful – it has

θ > 0 – suppose we either state (d = 1) that it is or say nothing

at all (d = 0) about θ;

0

0
α

1

True θ

Lo
ss

d=1: say it's harmful
d=0: say nothing

• L(θ, d = 1) = 1 if θ ≤ 0, i.e. large cost for getting it wrong

• L(θ, d = 1) = 0 if θ > 0, i.e. no cost for getting it right

• L(θ, d = 0) = α: small cost of saying nothing, regardless of

the true value of θ
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Testing: first example

Averaging over a green posterior;

0

0
α

1

True θ

Lo
ss

d=1
d=0

The expected posterior loss is

E[L(θ, d) ] =

{
α, d = 0

P[ θ < 0|Y ], d = 1
,

... so the Bayes rule sets d = 1 if P[ θ < 0|Y ] < α.
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Testing: first example

At a higher α, its ‘easier’ to get d = 1;

0

0

α

1

True θ

Lo
ss

d=1
d=0

If more than α of the posterior is in the tail below zero, the Bayes

rule is to say nothing, i.e. return d = 0.
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Testing: first example revisited

Now suppose we assess the sign of the variant’s effect; and let

d = 1 decide θ > 0, and d = 0 for θ ≤ 0?

Truth
θ ≤ 0 θ > 0

Decision d = 0 0 α
d = 1 1− α 0

• No cost for getting the answer right (a proper loss function)

• Small penalty for incorrectly saying θ > 0

• Large penalty for incorrectly saying θ ≤ 0
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Testing: first example revisited

As a picture;

0

0
α

1 − α
1

True θ

Lo
ss

d=1
d=0

And working out the posterior loss;

E[L(θ, d) ] =

{
αP[ θ > 0|Y ], d = 0

(1− α)P[ θ < 0|Y ], d = 1
,

... so – again! – the Bayes rule sets d = 1 if P[ θ < 0|Y ] < α.
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Testing

Some notes so far;

• These are one-sided tests, of the null hypothesis that θ < 0

• “Reject the null vs say nothing” is a significance test

• “Reject the null vs accept the null” is a hypothesis test

• α determines relative cost of tradeoffs

• The test have different decisions, even though both just look

at whether tail area < α.

• This is also true for one-sided frequentist significance/hypothesis

tests – in which p-values are approximately our tail areas, in

large samples, if likelihood dominates prior. So, p-values are

not unBayesian (but they’re also not BFs)

• Not (yet!) making decisions that θ is exactly zero, or any

other specific value... so don’t conclude this without more

assumptions
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Testing

Never distinguished significance vs hypothesis tests? It may help
to consider the three verdicts in ‘Scots Law’;

Verdict Significance test Hypothesis test

Guilty Reject H0 Reject H0
Not proven No no analog

Not guilty conclusion Accept H0
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Testing

XKCD on loss functions;

20

http://xkcd.com/1445/


Testing: doing two tests at once

Back to the significance test, i.e. say something vs nothing –

but now let’s do two one-sided tests, that decide if θ is Above

0 or Below 0;

Decision Truth Loss
dA 0 αA

1 θ > 0 0
1 θ ≤ 0 1

dB 0 αB
1 θ < 0 0
1 θ ≥ 0 1

... where we get L(d, θ) by adding the two components.
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Testing: doing two tests at once

As a picture – dA as dashed lines, dB as dotted;

0

0

αA
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True θ

C
om
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 o

f l
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dA=1
dA=0

dB=1
dB=0

Here are the possible overall posterior losses;

dB = 0 dB = 1
dA = 0 αA + αB αA + P[ θ > 0 ]
dA = 1 αB + P[ θ < 0 ] P[ θ < 0 ] + P[ θ > 0 ] = 1
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Testing: doing two tests at once

Which option is best?

dB = 0 dB = 1
dA = 0 αA + αB αA + P[ θ > 0 ]
dA = 1 αB + P[ θ < 0 ] 1

• Assuming αA+αB < 1, we never choose d = (dA, dB) = (1,1)

• If P[ θ < 0 ] < αA, then (1,0) beats (0,0). And because

P[ θ < 0 ] > 1− αA it also beats (0,1) ⇒ choose d = (1,0)

• If P[ θ > 0 ] < αB, then (0,1) beats (0,0). And because

P[ θ < 0 ] > 1− αB it also beats (1,0) ⇒ choose d = (0,1)

• If P[ θ < 0 ] > αA and P[ θ > 0 ] > αB, αA + αB is the best

option, ⇒ choose d = (0,0)

... so we ‘say nothing’ unless at least one tail is small. When one

tail is small, the Bayes rule gives the corresponding statement

about the sign of θ.
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Testing: doing two tests at once

Overall loss functions for the three decisions we consider;

0

0

αA + αB

1

True θ

O
ve

ra
ll 

lo
ss

d=(0,0)
d=(1,0)
d=(0,1)

To keep the ratio of costs for ‘say nothing’ versus ‘say something’

the same α : 1 ratio as in the one-sided test, we need to put

αA + αB = α. One obvious way to do this is setting αA = αB =

α/2 – known as using equal tails.
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Testing: doing two tests at once

More notes:

• This is a Bayesian analog of a standard two-sided frequentist

test. In large samples, they will give the same reject/don’t

reject decisions (with non-spiky priors)

• For two-sided tests, using anything except equal tails is

unusual, in Bayesian or frequentist work

• Still not declaring that θ = 0!

• Modifications of much the same argument can cope with

multivariate θθθ – where d = 1 trades off error in estimates of

θθθ versus inaccuracy saying (d = 0) that θθθ = 0. But the result

is equivalent to checking p < α.

• Here, α interpreted as how much You value saying nothing

vs saying something – which is highly context-specific, but a

lot easier than frequentist arguments...
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Testing: frequentist tests

Recall our frequentist archer, from Session 1;

Adapted from Gonick & Smith, The Cartoon Guide to Statistics

26

http://www.amazon.com/Cartoon-Guide-Statistics-Larry-Gonick/dp/0062731025


Testing: frequentist tests

Let’s do some more ‘target practice’, for frequentist testing;
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Testing: frequentist tests

Let’s do some more ‘target practice’, for frequentist testing;
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Testing: frequentist tests

Let’s do some more ‘target practice’, for frequentist testing;
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Testing: frequentist tests

Performing the test means assessing whether our data beats

some pre-specified measure of extremity;

Replications (infinitely many, and under the null)

50 100 150
Your data

(truth unknown)

T
(Y

)
c

... where the threshold c is chosen so that, under the null, a

fixed proportion α of datasets would be that extreme.
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Testing: frequentist tests

For any measure T (Y ), we can also obtain the p-value the

proportion of datasets we might observe at least as extreme

as that observed, under the null;

Replications (infinitely many, and under the null)

50 100 150Your data

T
(Y

)

Replications (infinitely many, and under the null)

p(
Y

)

50 100 150
Your data

(truth unknown)

0
1

... and then directly assess whether p < α.
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Testing: frequentist tests

• Frequentist testing is convoluted; at minimum, it requires

comparison against many hypothetical replications

• Which test statistic to use is subjective; good choices can

optimize power∗ for given Type I error rate α, but these may

not be known

• One silly no-data example: throw a 20-sided dice and if you

get 20 reject

• In practice – in genetics and elsewhere – controlling Type I

error rates is a heavy focus, and power comes second

* NB power = probability of seeing a significant result, given that one is

present
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Testing: losses featuring the prior

We’ve considered only the sign of θ – giving no posterior to prior
comparison. To fix this, we introduce θ∗, a parameter with the
same prior as θ, but which is not updated by the data.

A loss examining how the signs of θ and θ∗ compare;

θ∗ < 0 θ∗ > 0
θ < 0 θ > 0 θ < 0 θ > 0

d = 0 lN 1 0 lP
d = 1 lN 0 B0 lP

• If signs agree, d doesn’t matter
• No penalty for d = 1 if θ∗ < θ, or for d = 0 if θ∗ > θ
• Small penalty (1) if d = 0 but θ∗ < θ
• Large penalty (B0) if d = 1 but θ∗ > θ
• Bayes rule returns d = 1 if

B0P[ θ∗ > 0 ]P[ θ < 0|Y ] < P[ θ∗ < 0 ]P[ θ > 0|Y ],

i.e.
P[ θ > 0|Y ]

1− P[ θ > 0|Y ]
> B0

P[ θ∗ > 0 ]

1− P[ θ∗ > 0 ]
.
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Testing: losses featuring the prior

Notes:

• This form of loss returns d = 1 if the posterior odds of

positive θ, i.e. P[ θ>0|Y ]
1−P[ θ>0|Y ] are more than B0 times bigger

than the prior odds of positive θ∗

• The ratio of the odds is known as the Bayes factor – usually

denoted B. It does not depend on the prior support for θ∗ > 0

• We have compared sign (θ > 0 and θ < 0) but any two sets

would do, e.g. θ = 0 and θ 6= 0.

T-shirt sizes for Bayes Factors > 1; (Kass & Raftery 1995)

B Evidential meaning
1 to 3 not worth more than a bare mention

3 to 20 positive
20 to 150 strong
>150 very strong
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Multiple testing

From one test to many;

Just finding “hits” is okay, as no-one will understand a “big”-
dimensional posterior, and exact size of association (beyond
positive/negative) doesn’t matter.
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Multiple testing

But big data has not always been covered in statistical glory;

Bennett et al exposed a salmon to two different stimuli,
measuring brain activity in 8064 voxels. Standard methods show
16 differential-response ‘hits’. Any problems?
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Multiple testing: background

...resulting in skepticism (and panic-inducing gobbledygook)
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Multiple testing: background

And yes, XKCD knows about it;
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Multiple testing: background

What statisticians should do with more than one test is an old
problem;

The topic of multiple comparisons is sorely in need of
clarification ... we do not really understand what its purpose is
... The statistical literature is full of [multiple testing] methods
and techniques but quite devoid of a basic rationale and clearly
stated purpose, and there still are many who doubt if the topic

has any relevance at all.

K Ruben Gabriel, JASA 73:363 1978

In my view multiple comparison methods have no place at all in
the interpretation of data.

John Nelder, JRSSB, 1971 33, 244–246
Re-iterated (!) in JRSSD, 1999 48, 257–269
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Multiple testing: background

Another old-timer, in olden-times;

The theoretical basis for advocating routine adjustment for
multiple comparisons is the ‘universal null hypothesis’ that
‘chance’ serves as the first-order explanation for observed

phenomena. This hypothesis undermines the basic premises of
empirical research, which holds that nature follows regular laws

that may be studied through observations ... Furthermore,
scientists should not be so reluctant to explore leads that may
turn out to be wrong that they penalize themselves by missing

possibly important findings.

Ken Rothman
No adjustments are needed for multiple comparisons

Epidemiology 1990, 1:43–6

But with no penalty for leads being wrong, logically we have to
investigate everything. In highly-restricted settings one can do
this – e.g. small factorial designs – but that’s all.
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Multiple testing: background

Genetic epidemiology to the rescue!

The emergence of genetic epidemiology, with its staggering
number of associations to explore, has brought

multiple-inference concepts into the mainstream of
epidemiology and biostatistics.

It is thus time to recognize of the extent of multiple
comparison problems in everyday epidemiology and deploy

modern methods toward their resolution.

Sander Greenland (discussing Jon’s work)
International Journal of Epidemiology 2008;37:430–434

Rothman & Greenland are co-editors of a very popular Epi-
demiology textbook. In the latest edition (2008) Rothman has
considerably moderated his earlier views.
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Multiple testing: many decisions

Back to deciding the sign of a single θ;

0

0

α

1

True θ

Lo
ss

d=(1,0): say it's +ve
d=(0,1): say it's −ve
d=(0,0): say nothing

Written in terms of indicator functions, this is

L(θ, d) = α1{say nothing}+ 1{say something, wrong sign},

which emphasises α is a tradeoff rate; how much cheaper is it

to say nothing than to get the wrong sign?
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Multiple testing: many decisions

Just as we combining two one-sided tests, for testing m multiple
parameters θi, we can add the loss functions;

L(θθθ,d) =
m∑
i

L(θi, di) =
m∑
i=1

αi1{say nothing about θi}

+
m∑
i=1

1{say something, wrong sign for θi}.

But what αi to use? To ensure that we have some chance of
saying nothing at all, need to ensure that

∑m
i=1αi = α, for some

α < 1 – also known as alpha-spending. Of course, one easy
way to do this is set each αi = α/m, giving a Bayesian analog
Bonferroni correction of the significance levels.

The ‘Bonferroni-corrected decisions’ would set di = 1 for each
parameter for which min(P[ θi < 0 ],P[ θi > 0 ]) < α/2m. This
is a conservative approximation to the Bayes rule dB here –
Bonferroni may set more di = 0 than the exact Bayes rule.
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Multiple testing: many decisions

Rather more simply, consider a different loss function;

L(θθθ,d) = αProp(non-decisions, out of m) + #{wrong signs}
= α/m#{non-decisions}+ #{wrong signs}

=
m∑
i=1

αi1{say nothing about θi}

+
m∑
i=1

1{say something, wrong sign for θi},

if we use αi = α/m.

• This is a conservative criterion – trading off an average
against a sum
• Frequentist version of using αi = α/m is Bonferroni correc-

tion (see Session 3) which controls Family-wise Error Rate
at level α
• The Bayes rule is exactly Bonferroni correction – set di = 1

when tail areas are below α/m
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Summary

• Decision theory is a language for saying what we want from

analyses – and how much we want it

• Any good analyst does this informally – but for difficult

problems, the formal language can help

• Why does anyone use p-values? Perhaps because they only

care about the sign of β?

• Multiple testing corrections are not unBayesian. Decision

theory can help state what they do...

• ...or at least provide alternative justifications
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