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Motivation

Diabetes example:

• n=342 subjects

• yi = diabetes progression

• xi = explanatory variables.

Each xi includes

• 13 subject specific measurements (xage, xsex, . . .);

• 78 =
(

13
2

)
interaction terms (xage · xsex, . . .) ;

• 9 quadratic terms (xsex and three genetic variables are binary)

100 explanatory variables total!
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OLS regression
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Backwards elimination

1. Obtain the estimator β̂ββols = (XXXTXXX)−1XXXTy and its t-statistics.

2. If there are any regressors j such that |tj| < tcutoff,

(a) find the regressor jmin having the smallest value of |tj| and remove column

jmin from XXX.

(b) return to step 1.

3. If |tj| > tcutoff for all variables j remaining in the model, then stop.
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Backwards elimination
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2 = 0.64, ... annoyingly!
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Spurious associations

Now try modeling permuted yπ(i) = βββTxi + εi (and backwards-select)
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Spurious associations
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Spurious associations

sum(abs(t.bslperm)>2 )
## [1] 21
sum(abs(t.bslperm)>3 )
## [1] 12
sum(abs(t.bslperm)>4 )
## [1] 5

• 21 regressors have t-stats > 2 (p ≈ 0.05)

• 12 regressors have t-stats > 3 (p ≈ 0.003)

• 5 regressors have t-stats > 4 (p ≈ 0.00006)

Often want some way to pick a sparse model – but this approach is not smart if

we want to say how reliable our pick is.
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Bayesian model selection

We have prior belief that βj ≈ 0 for many j’s; a model allowing this specifies
βj = zj × bj, where zj ∈ {0,1} and bj ∈ R.

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi.

For example, in Session 4’s FTO experiment,

E[Y |x, b, z = (1,0,1,0) ] = b1x1 + b3x3

= b1 + b3 × age

E[Y |x, b, z = (1,1,0,0) ] = b1x1 + b2x2

= b1 + b2 × group

E[Y |x, b, z = (1,1,1,0) ] = b1x1 + b2x2 + b3x3

= b1 + b2 × group + b3 × age.

Can think of each value of z = (z1, . . . , zp) representing a different model.
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Bayesian model selection

But easier to implement thinking of zj as unknown components in one (big)

model – written informally as;

zj
i.i.d.∼ Bern(0.5)

bj ∼ p(bj)

εi
i.i.d.∼ N(0, σ2)

σ2 ∼ p(σ2)

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi

Each of the 2p possible values of of z has a posterior probability. (In the prior we

treat them as a ‘coin toss’, equally likely to be ‘in’ or ‘out’.)
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Bayesian model comparison

The posterior probability of the submodels is obtained from

p(z|y,XXX) =
p(z)p(y|XXX, z)

p(y|XXX)

To compare submodels a and b, usually consider the odds of each, and how they

compare:

p(za|y,XXX)

p(zb|y,XXX)
=

p(za)

p(zb)
×

p(y|XXX, za)

p(y|XXX, zb)
posterior odds = prior odds × “Bayes factor”

Importantly, the Bayes Factor (BF) does not depend on the prior for z – so the

‘coin toss’ prior is not crucial for this approach.

6.9



Parsimony

The formula for p(y|x, z) is complex, but

p(y|XXX, za)

p(y|XXX, zb)
= (1 + n)(pzb−pza)/2

s2
za

s2
zb

1/2

×

s2
zb

+ SSR
zb
g

s2
za + SSRzag

(n+1)/2

.

where SSRg denotes a form of sum of squared residuals.

So a model za is penalized if;

• it is too complex (number of covariates pA is large)

• it doesn’t fit well (SSRag is large)
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FTO example

E[Yi|βββ,xi ] = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4
= β1 + β2 × grpi + β3 × agei + β4 × grpi × agei .

effect of group ⇔ one of more of β2, β4 not zero

z model log p(y|XXX, z) p(z|y,XXX)
(1,0,0,0) β1 −71.82 0
(1,1,0,0) β1 + β2 × grpi −70.04 0
(1,0,1,0) β1 + β3 × agei −67.04 0
(1,1,1,0) β1 + β2 × grpi + β3 × agei −61.19 0.63
(1,1,1,1) β1 + β2 × grpi + β3 × agei + β4 × grpi × agei −61.72 0.37

P[β2 or β4 6= 0 ] = 0.60

P[β2 or β4 6= 0|y,XXX ] ≈ 1
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FTO example: using JAGS

Using the conjugate g-prior is a little artificial here;

• Each sub-model has a prior that corresponds to one observation’s information,
but those observations are not the same.
• It’s strange to support the model with all βj = 0, i.e. where E[Yi|xi ] is exactly

zero for everyone

So we’ll instead use a general-purpose Gibbs sampler for the same model, but
with z1 = 1 (forcing an intercept) and

zj
i.i.d.∼ Bern(0.5)

bj ∼ N(0,10), for j = 2,3,4

εi
i.i.d.∼ N(0, σ2)

1/σ2 ∼ Γ(0.5,1.839) ... as in Lec 4

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi
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Reminder: Gibbs sampler

Goal: A Monte Carlo approximation to p(x, y, z)

Given {x(s), y(s), z(s)},

1. simulate x(s+1) ∼ p(x|y(s), z(s)),

2. simulate y(s+1) ∼ p(y|x(s+1), z(s)),

3. simulate z(s+1) ∼ p(z|xs+1), y(s+1)) .

This generates {x(s+1), y(s+1), z(s+1)} – and then ‘go round’ again, many times.

Repeated many times, this generates {x(1), y(1), z(1)}, . . . , {x(S), y(S), z(S)}
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Reminder: Gibbs sampler

For a couple of two-dimensional examples;
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Reminder: Gibbs sampler

Output from a short sampler;
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Reminder: Gibbs sampler

Repeated many times, this gives {x(1), y(1), z(1)}, . . . , {x(S), y(S), z(S)}

The distribution of this sequence approximates p(x, y, z):

1

S

∑
x(s) ≈ Ex =

∫
x p(x, y, z) dx dy dz

#(x(s) ∈ A)

S
≈ Pr(x ∈ A) =

∫ ∫ ∫
A
p(x, y, z) dx dy dz

#({x(s), y(s), z(s)} ∈ B)

S
≈

∫ ∫ ∫
B

p(x, y, z) dx dy dz

By necessity, the sequence will frequently visit regions where p(x, y, z) is large.
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Gibbs sampling: for model selection

Goal Approximate p(z1, . . . , zp|y,XXX).

Gibbs sampler: Given z(s) = (z(s)
1 , . . . , z

(s)
p ),

z
(s+1)
1 ∼ p(z1|z

(s)
2 , . . . , z

(s)
p ,y,XXX)

z
(s+1)
2 ∼ p(z2|z

(s+1)
1 , z

(s)
3 , . . . , z

(s)
p ,y,XXX)

...

z
(s+1)
p ∼ p(zp|z(s+1)

1 , . . . , z
(s+1)
p−1 ,y,XXX)

This generates z(s+1) from z(s).

Repeating this generates z(1), . . . , z(S) with which to approximate p(z|y,XXX).
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FTO example: using JAGS

Stan can’t handle discrete parameters (yet) so we’ll use JAGS – Just Another
Gibbs Sampler. JAGS writes and executes MCMC code, given a model and data.

library("rjags")
# first, write the model as to a text file
cat(file="linearprog2.txt", "model{

for(j in 1:p){
b[j]~dnorm(0, 0.1) }

z[1] <- 1 # fix the intercept to be in the model
for(j in 2:p){

z[j] ~ dbern(0.5) }
inv.sigma2 ~ dgamma( 0.5, 1.839 )

sigma <- sqrt(1/inv.sigma2)
for(i in 1:n){

mu[i] <- x[i,1]*b[1]*z[1] + x[i,2]*b[2]*z[2] + x[i,3]*b[3]*z[3] + x[i,4]*b[4]*z[4]
y[i] ~ dnorm(mu[i], inv.sigma2) }
}")
# compile code based on model and data, then run chain
jags1 <- jags.model("linearprog2.txt", data=list(y=y,x=X, n=nrow(X), p=ncol(X)) )
update(jags1, 50000) # initial iteraions

6.18
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FTO example: using JAGS

And some of

the output;

> jags1.out <- coda.samples(jags1, c("b","inv.sigma2", "z"), n.iter=100000)[[1]]
> summary(jags1.out)
Iterations = 50001:150000
Number of chains = 1
Sample size per chain = 1e+05
1. Empirical mean and standard deviation for each variable & std err of the mean:

Mean SD Naive SE Time-series SE
b[1] 0.7593 1.26609 0.0040037 0.0184052
b[2] 1.2431 2.71152 0.0085746 0.0300475
b[3] 2.6202 0.39962 0.0012637 0.0057575
b[4] 2.1791 0.62138 0.0019650 0.0091990
inv.sigma2 0.2676 0.09069 0.0002868 0.0004338
z[1] 1.0000 0.00000 0.0000000 0.0000000
z[2] 0.5604 0.49634 0.0015696 0.0058886
z[3] 1.0000 0.00000 0.0000000 0.0000000
z[4] 0.9928 0.08431 0.0002666 0.0015052

The coefficient of genotype is 6= 0 with 56% posterior support; the interaction
term being 6= 0 has 99% support. The chain never moved from supporting age
term 6= 0, so it has (approximately) 100% support.
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FTO example: using JAGS

All 100,000 steps in the chain are stored, so we can assess posterior for other

terms – for example the support for each set of included/excluded variables;

> table(apply( jags1.out[,c("z[1]","z[2]","z[3]","z[4]")], 1, paste, collapse="") )/100000
1011 1110 1111

0.43851 0.00693 0.55456

And comparing the

posteriors for b2 to

the posterior to the

actual genotype coef-

ficient, β2 = b2 × z2;
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FTO example: using JAGS

Using MCMC, we have to start the ‘chain’ somewhere – but this arbitrary choice
shouldn’t affect analysis, if we run the chains for long enough.

• After running long enough, the chains from any two starting points should
converge to cover the posterior in the same way
• Less formally, after running long enough, chains forget where they started
• It’s pragmatic (but not perfect) to run chains from a few different starting

points, and check they give similar answers

JAGS makes this fairly painless – here for 4 short chains;

set.seed(4)
inits1 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,0,1,0))
inits2 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,0,0,0))
inits3 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,1,1,0))
inits4 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,1,1,1))
jags2 <- jags.model("linearprog2.txt", data=list(y=y,x=X, n=nrow(X), p=ncol(X)),
inits=list( inits1, inits2, inits3, inits4), n.chains=4 )
jags2.out <- coda.samples(jags2, c("b"), n.iter=10000)

6.21



FTO example: using JAGS

An informal way to check for convergence is to look for differences in each chain’s
traceplot; (no issues seen here)

plot(jags2.out, trace=TRUE, density=FALSE, auto.layout=FALSE, col=adjustcolor(2:5, alpha.f=0.25), lty=1)
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FTO example: using JAGS

To more formally check convergence of the chains for individual parameters, the
Gelman-Rubin diagnostic compares within-chain variance (W ) to between-chain
variance (B), using tools from mixed models. For a converged chain their ratio
R = W/B should be ≈ 1...

> gelman.diag(jags2.out)
Potential scale reduction factors:

Point est. Upper C.I.
b[1] 1 1.00
b[2] 1 1.00
b[3] 1 1.00
b[4] 1 1.01

Similar ideas provide the effective sample size, i.e. roughly how big a simple
random sample from the posterior is represented by the (auto-correlated) chain

> effectiveSize(jags2.out)
b[1] b[2] b[3] b[4]

1860.972 3057.044 1898.274 1586.170 # each from 40,000 iterations
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FTO example: using JAGS

gelman.plot(jags2.out) shows how W/B evolves over iterations;

0 2000 4000 6000 8000 10000

1.
0

2.
0

3.
0

4.
0

last iteration in chain

median
97.5%

b[1]

0 2000 4000 6000 8000 10000

1.
0

2.
0

3.
0

4.
0

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

b[2]

0 2000 4000 6000 8000 10000

1
2

3
4

5

last iteration in chain

median
97.5%

b[3]

0 2000 4000 6000 8000 10000

1
2

3
4

5

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

b[4]

Ideally, don’t start using the chain output until it looks like it converged – & even
then, use as long a chain as you can manage. Thin it, if memory is an issue.
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Stochastic search: High dimensional regression

Back to the diabetes example, with p=100, meaning there are 2100 ≈ 1030 models

to consider.

That’s a huge number! We can’t compute P[ z|y,XXX ] for each z. Instead, we hope

to;

• search for models z with high posterior probability;

• approximate βj = zj × bj for each j;

• build a predictive model for y.

We can view Gibbs Sampling here as a way to explore possible models – not to

fully cover the whole parameter space. It will tend to sample models that better

support the data.
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Diabetes example
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Marginal inference

What is the estimate of βββ? Recall

βββ = (β1, . . . , βp) = (b1z1, . . . , bp, zp)

Our Monte Carlo samples are

βββ(1) = (0 −.299 0 .427 · · · .845)

βββ(2) = (0 −.235 .834 .374 · · · 0)
... ...

βββ(S) = (0 −.315 0 .536 · · · 0)

A posterior mean for βββ is obtained in the usual way:

β̂ββ
bayes

=
1

S

∑
βββ(s) ≈ Eβββ|y,XXX

Out of sample predictions can be made with β̂ββbayes:

ŷ
bayes
test,i = β̂ββ

T
bayesxtest,i
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Marginal inference

How does it do?
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Out of sample prediction error:
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Important variables

A standard (if ill-defined!) question is “what variables matter most?”

Here, we can order covariates by either their posterior probability of being in

the model, or the p-value from non-Bayesian backwards selection. The answers

(below) are not identical, but some variables appear high on the list both ways.

colnames(X)[ order(z.pmean,decreasing=TRUE)[1:10] ]
## [1] "bmi" "ltg" "g2" "map" "tc" "sex.age" "sex"
## [8] "ldl" "ltg.age" "tch"

colnames(X)[ order(b.pmean,decreasing=TRUE)[1:10] ]
## [1] "ltg" "bmi" "ldl" "map" "sex.age" "hdl" "ltg.age"
## [8] "tch" "glu.bmi" "map.sex"
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Other approaches, briefly

Model-averaging in this way gives an honest statement of uncertainty. But;

• Not all variables are in the model for the same reason – may want to ‘force’

some covariates into the model

• When selecting a single, parsimonious model, may want to maximize its ability

to predict – not its probability of being true
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Confounding

‘Confounding’ means not being able to distinguish between a signal of interest,

and some other cause. Here’s a genetic ‘signal’;

G

Y

AA Aa aa
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Confounding

...which can be explained by ancestry, i.e. is confounded by ancestry

G

Y
AA Aa aa

However, analysis that adjusts for ancestry would be of interest – even if models

without it are better-supported.
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Confounding

Directed Acyclic Graphs (DAGs) are a general language for confounding;

Arrows indicate causal relationships; confounding means ‘backdoor paths’ exist;

these can be removed by adjustment for confounders. In genetic association work,

typically ancestry is the only plausible confounder - expression and methylation

work is more complex.
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Confounding

Bayesian Adjustment for Confounding (BAC, Wang et al 2012) specifies a model
with

1. Dependence of outcome on the exposure and the set of confounders

2. Dependence of exposure on the set of confounders

3. Dependence between these models, making variable inclusion in (1) more
likely if it is included in (2)

So BAC fits two set of z indicators, and links them. Modeling exposures is
unusual – doing it well takes careful work.

The method is implemented in BEAU, a stand-alone R package, using approxi-
mate calculations for the posterior.

6.34

http://www.ncbi.nlm.nih.gov/pubmed/22364439
http://sweb.uky.edu/~cwa236/BEAU/


Prediction

Understanding causes (and confounding) is often very important – but ability to

predict can matter too;

• Remaining lifetime

• Drug response

• Telling ‘good’ genotyping from ‘bad’

To pick a model here, it’s reasonable to ask how well it would predict in similarly-

collected data. This choice may not be the same as asking what the causes are,

e.g. TV ownership rates predict child mortality but are not a cause.
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Cross-validation

A natural way to assess how well a fitted model predicts is to fit it, and predict!

SSR is a common measure of predictive accuracy
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Cross-validation

• SSR (squared error loss) is not the only option – need to consider the loss

(utility) of particular predictions

• For categorical outcomes, could also weight misclassification rates (e.g.

P (1|0) and P (0|1)) – some mistakes may be worse than others

• Trickier still for dependent outcomes

• 10-fold cross-validation is typical

• Fitting multiple models with Gibbs sampling, and cross-validating each can

be too slow
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Approximate prediction measures

The standard ‘score’ is log posterior predictive density

log pppost(y) = log
∫
p(y|θ)p(θ|y)obsdθ).

Expected out-of-sample accuracy (over new datasets ỹ) is defined as

elpd = E(log pppost(ỹ)) =
∫

log pppost(ỹ)q(ỹ)dỹ

for true density q(ỹ). A natural way to estimate this is through the ‘in sample

accuracy’,

lpd = log
∫
p(yobs|θ)p(θ|y)obsdθ,

but its double-use of the posterior leads to bias – worse with more parameters.
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Approximate prediction measures

• Akaike’s Information Criterion (AIC) approximates lpd by log p(yobs|θ̂MLE) –

so is not Bayesian, and adds bias-correction k, the number of parameters

• Deviance Information Criterion (DIC) approximates lpd by log p(yobs|E(θ|yobs))

and adds the effective number of parameters,

pD = 2 (log p(yobs|E[ θ|yobs ])− Eθ[ log p(yobs|θ) ])

For either, in large samples – and under some conditions – choosing the model

with the lowest value is equivalent to doing cross-validation.

Note: several other versions are available; AIC, DIC2, WAIC...
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DIC examples

• Shriner and Yi 2009 use DIC in the context of multiple QTL Mapping – to

select how many QTLs there are, and their locations

• Yu et al, 2012 use DIC studying gene×environment interactions, with a model

that ‘clusters’ nearby∗ variants, so they have similar interaction effects. DIC

is used to choose how many clusters

* ...using the Potts model
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682718/
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