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In this session

• An important conjugacy result – Normal prior, Normal likelihood

• Linear regression – the standard approach for continuous outcomes (this

material mostly review?)

• Bayesian linear regression

• A first look at Markov Chain Monte Carlo – much more in later sessions
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Normal prior, Normal likelihood

The best-known and most widely-used statistical is the Normal or Gaussian
distribution, denoted N(µ, σ2) for mean µ and variance σ2.

In sampling distributions, approximately

Normal observations are expected when the

variable is the sum of many similarly-sized

small influences (e.g. height as a sum of

SNP effects). This is called the Central

Limit Theorem.

In priors, Normals are a convenient way to state beliefs, mainly because they’re
so familiar. They can also make some calculations easier (which is why Gauss
liked them).
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Normal prior, Normal likelihood: conjugacy

If Y1, ...Yn are a random sample from N(θ, σ2) with

known variance σ2:

prior θ ∼N(µ0, τ
2)

sampling model Y ∼N(θ, σ2)

then posterior θ|Y ∼N
(
wȲ + (1−w)µ0,

1
1
τ2+ n

σ2
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• Posterior mean is a weighted average of prior mean and sample mean
• Weights are ∝ precision, i.e. 1/variance.
• Posterior precision = prior precision + precision from data
• With large n Bayes gives essentially standard result: point estimate Ȳ , 95%

interval is Ȳ ± 1.96σ/
√
n. With tiny n, posterior≈prior.
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FTO example: design

We’ll soon use a version of Normal/Normal conjugacy in an analysis of the FTO

gene, involved in growth and obesity.

Experimental design:

• 10 fto+ /− mice

• 10 fto− /− mice

• Mice are sacrificed at the end

of 1-5 weeks of age (not 16

weeks, as here)

• Two mice in each group are

sacrificed at each age

• n = 20 overall, so a small but

well-controlled study
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FTO example: data
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FTO example: critical modeling assumption

In this example:

• Y = weight, which will be Normal conditional on covariate-specific mean
• xg = indicator of fto heterozygote ∈ {0,1} = number of “+” alleles
• xa = age in weeks ∈ {1,2,3,4,5}

The critical modeling choice is how mean Y depends on the covariates. Without
further assumptions, we could choose to model E[Y |X = x ] as

age (weeks)
genotype 1 2 3 4 5
−/− θ0,1 θ0,2 θ0,3 θ0,4 θ0,5
+/− θ1,1 θ1,2 θ1,3 θ1,4 θ1,5

This can’t be ‘wrong’ – there is a mean weight for each genotype at each age –
but we’d need to estimate 10 parameters from n = 20 data points.
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Linear regression

But pragmatically, we instead assume smoothness in mean weight as a function
of age. For each group, we assume

E[Y |Xa = xa ] = α0 + α1xa

for some unknown α0 and α1, that we’ll estimate.

• Now we can borrow strength across the ages. For example, the difference in
4-5 week mice weights tells us about the difference in 1-2 week weights
• Can also write the assumption as

y = α0 + α1xa + ε,

where ε is some mean-zero ‘noise’
• A more complex linear regression might assume e.g. y = α0 + α1xa + α2x

2
a +

α3x
3
a + ε, — linearity means “linear in the parameters”, i.e. adding several

covariates, each multiplied by its own α coefficient.
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Multiple linear regression

We can also create variables, to describe models for both groups simultaneously:

xi,1 = 1 for each subject i

xi,2 = 0 if subject i is homozygous, 1 if heterozygous

xi,3 = age of subject i, in weeks

xi,4 = xi,2 × xi,3
E[Yi|X = x ] = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4,

...or write this as Yi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + εi

for some mean-zero εi. Note that under this model,

E[Y |x, ] = β1 + β3 × age if x2 = 0, and

E[Y |x ] = (β1 + β2) + (β3 + β4)× age if x2 = 1.
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Multiple linear regression

For graphical thinkers...
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Normal linear regression

How do the Yi vary around E[Yi|βββ,xi ], ?

Yi = βββTxi + εi

ε1, . . . , εn ∼ i.i.d. Normal(0, σ2).

Assuming independent identically-distributed Nor-

mal errors gives the likelihood:

p(y1, . . . , yn|x1, . . .xn,βββ, σ
2) =

n∏
i=1

p(yi|xi,βββ, σ2)

= (2πσ2)−n/2exp

− 1

2σ2

n∑
i=1

(yi − βββTxi)2

 .
Note: in large(r) sample sizes, what we learn about the βj is “robust” to the
Normality assumption—but with n = 20 we do rely on the mean being linear in
the x’s, and on the εi’s variance σ2 being constant with respect to x.
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Linear regression: non-Bayes methods (*)

What values of βββ are consistent with our data y,XXX? Recall that

p(y1, . . . , yn|x1, . . .xn,βββ, σ
2) = (2πσ2)−n/2exp{−

1

2σ2

n∑
i=1

(yi − βββTxi)2}.

This is big when SSR(βββ) =
∑

(yi − βββTxi)2 is small. It can also be written as

SSR(βββ) =
n∑
i=1

(yi − βββTxi)2 = (y −XXXβββ)T (y −XXXβββ) = yTy − 2βββTXXXTy + βββTXXXTXXXβββ,

where we use matrix notation, i.e.

y =


y1
y2
...
yn

 ,XXXβββ =


x1 →
x2 →

...
xn →



β1
β2
...
βp

 =


xT1βββ
xT2βββ...
xTnβββ

 =


β1x1,1 + · · ·+ βpx1,p
β2x2,1 + · · ·+ βpx2,p

...
β1xn,1 + · · ·+ βpxn,p

 .
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Linear regression: non-Bayes methods (*, almost)

Classical linear regression uses the β̂ββ that makes SSR smallest, i.e. finds the
‘best-fitting’ model. To minimize SSR, ‘recall’ that...

1. a minimum of a function g(z) occurs at a value z such that d
dzg(z) = 0;

2. the derivative of g(z) = az is a and the derivative of g(z) = bz2 is 2bz.

Doing this for SSR...
d

dβββ
SSR(βββ) =

d

dβββ

(
yTy − 2βββTXXXTy + βββTXXXTXXXβββ

)
= −2XXXTy + 2XXXTXXXβββ ,

and so
d

dβββ
SSR(βββ) = 0 ⇔ −2XXXTy + 2XXXTXXXβββ = 0

⇔ XXXTXXXβββ = XXXTy ⇔ βββ = (XXXTXXX)−1XXXTy .

β̂ββols = (XXXTXXX)−1XXXTy is the Ordinary Least Squares (OLS) estimator of βββ.
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Linear regression: non-Bayes methods in R

### OLS estimate
> beta.ols <- solve( t(X)%*%X )%*%t(X)%*%y
> beta.ols

[,1]
(Intercept) -0.06821632
xg 2.94485495
xa 2.84420729
xg:xa 1.72947648

### or less painfully, using lm() and R’s formula syntax:
> fit.ols<-lm( y~ xg*xa )

> coef( summary(fit.ols) )
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06821632 1.4222970 -0.04796208 9.623401e-01
xg 2.94485495 2.0114316 1.46405917 1.625482e-01
xa 2.84420729 0.4288387 6.63234803 5.760923e-06
xg:xa 1.72947648 0.6064695 2.85171239 1.154001e-02
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Linear regression: non-Bayes methods in R
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> coef( summary(fit.ols) )
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06821632 1.4222970 -0.04796208 9.623401e-01
xg 2.94485495 2.0114316 1.46405917 1.625482e-01
xa 2.84420729 0.4288387 6.63234803 5.760923e-06
xg:xa 1.72947648 0.6064695 2.85171239 1.154001e-02

(The classic version esti-

mates the standard error of

each β̂j, and gives p-values

indicating how significantly

they differ from zero. tj
denotes β̂j/Est.StdErr[ β̂j ],

which has a t distribution if

βj=0.)
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Multivariate Normal distribution

Before Bayesian linear regression, a final piece of math

notation.

The multivariate Normal distribution describes ran-

dom vectors. For mean m and variance matrix∗ V, it

is written mvn(m,V) – see right for an example:

So we can write a full linear regression model as just

y|XXX,βββ, σ2 ∼ mvn(XXXβββ, σ2I),

where σ2 is the (assumed-constant) variance of each observation around its mean,
and I denotes an identity matrix, with 1s on the diagonal and 0 elsewhere.

* For random vector Yi, variance matrix Var[Y ] has diagonal elements Var[Yi ] and off diagonal

elements Cov[Yi, Yj ]
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Bayesian inference for linear regression models

With σ2 known, Normal priors for βββ are conjugate. With

prior βββ ∼ mvn(βββ0,Σ0)
sampling model y ∼ mvn(XXXβββ, σ2I)

then posterior βββ|y,XXX ∼ mvn(βββn,Σn),
where Σn = Varβββ|y,XXX, σ2 = (Σ−1

0 +XXXTXXX/σ2)−1

βββn = Eβββ|y,XXX, σ2 = (Σ−1
0 +XXXTXXX/σ2)−1(Σ−1

0 βββ0 +XXXTy/σ2).

• Posterior precision (inverse-variance) is the sum of precision from prior and

sampling model

• Posterior mean is a kind of weighted average of prior mean on β̂OLS, with

precision/inverse-variance weights

• If Σ−1
0 � XXXTXXX/σ2, then βββn ≈ β̂ββols, if Σ−1

0 � XXXTXXX/σ2, then βββn ≈ βββ0 – sensibly
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The g-prior

But how to pick βββ0,Σ0? A classical suggestion (Zellner, 1986) uses the g-prior:

βββ ∼ mvn(0, gσ2(XXXTXXX)−1).

Why this variance? The variance of the OLS estimate β̂ββols is

Varβ̂ββols = σ2(XXXTXXX)−1 =
σ2

n
(XXXTXXX/n)−1,

which can be thought of as (roughly) the uncertainty in βββ from n observations.
In the g-prior the variance is

gσ2(XXXTXXX)−1 =
σ2

n/g
(XXXTXXX/n)−1,

which can be viewed as the uncertainty from n/g observations.

For example, g = n means the prior has the same amount of info as 1 observation
– so (roughly!) not much, in a large study.
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Posterior distributions under the g-prior

Following the conjugacy results, with σ2 known it turns out that

βββ|y,XXX, σ2 ∼ mvn(βββn,Σn),

where Σn = Var[βββ|y,XXX, σ2 ] =
g

g + 1
σ2(XXXTXXX)−1

βββn = E[βββ|y,XXX, σ2 ] =
g

g + 1
(XXXTXXX)−1XXXTy

• The posterior mean estimate βββn is simply g
g+1β̂ββols.

• The posterior variance of βββ is simply g
g+1Varβ̂ββols.

• βββTnΣ−1
n βββn is g

g+1 times smaller than β̂ββ
T
OLSVar[ β̂ββOLS ]−1β̂ββOLS, the usual signal-

to-noise measure we turn into p-values
• g shrinks the coefficients towards 0 and so can prevent overfitting to the data
• If g ∝ n, then as n increases, inference approximates classical methods.
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Monte Carlo simulation

But σ2 is rarely known exactly, so more realistic analysis captures that uncertainty

via a prior. A convenient & popular choice is the inverse-Gamma distribution:

prior 1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2)

sampling model y ∼ mvn(XXXβββ, σ2I)
posterior 1/σ2|y,XXX ∼ gamma([ν0 + n]/2, [ν0σ

2
0 + SSRg]/2)

...where SSRg is complicated but basically a sum of squared residuals.

A natural next step is be to use the conjugate posteriors for σ and βββ together –

usually to get the marginal posterior for βββ. But this requires integration:

p(βββ|y,XXX) =
∫
σ2>0

p(βββ, σ2|y,XXX)dσ2 =
∫
σ2>0

p(βββ|σ2,y,XXX)p(σ2|y,XXX)dσ2

This takes work, and is error-prone. Instead we’ll use Monte Carlo methods.
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Monte Carlo simulation

The Monte Carlo method is

important for Bayesian work;
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The big idea: with a large sample from a distribution – e.g. the posterior

– we can approximate any property of that distribution.
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Monte Carlo simulation

It may seem like sampling would

require full knowledge of the

posterior, and be at least as much

work as the integration.

But this isn’t true: one way to

do it is the Gibbs Sampler – here

shown for two examples

θ1 θ1

θ2 θ2

1

3

4

5

1

2

3

4
5

2

Gibbs updates parameters ‘one at a time’, using only p(θ1|θ2), then p(θ2|θ1) – so
no hard integration to do. The sequence of samples θθθ(s) (a Markov Chain) are
autocorrelated, i.e. dependent, but the posterior is covered appropriately.
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Monte Carlo simulation

Recall the posterior can be written as p(θ1, θ2|Y) = p(θ2|Y) × p(θ1|θ2,Y), so if

we can generate from conditional p(θ1|θ2,Y) – in one variable – with frequency

p(θ2|Y) for each θ2, we get a sample from the full posterior.

Gibbs does this, using just the conditionals, iterating between these steps:

θ
(s)
1 ∼ p(θ1|θ

(s−1)
2 ,Y)

θ
(s)
2 ∼ p(θ2|θ

(s)
1 ,Y)

to produce a chain (θ(0)
1 , θ

(0)
2 ), (θ(1)

1 , θ
(1)
2 ), ..., (θ(s)

1 , θ
(s)
2 ), ...

• If the chain is long enough (s→∞), this sequence is a sample from p(θ1, θ2|Y),

no matter where you started

• For more parameters, update each single θk in turn, then start again
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MCMC: with Stan

Stan works out all the condition-

als for us, and how to update

based on them ;

• Specify just a model, including priors, and tell Stan what the data are
• Stan writes code to sample from the posterior, by ‘walking around’ – actually

it runs the No U-Turn Sampler, a more advanced algorithm for exploring the
parameter space
• Stan runs this code, and reports back all the samples
• The rstan package lets you run chains from R
• Some modeling limitations – no discrete parameters – but becoming very

popular; works well with some models where other software would struggle
• Requires declarations (like C++) – unlike R – so models require a bit more

typing...
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MCMC: with Stan

For our linear regression, with unknown σ2;

cat(file="FTOexample.stan", "
data {

int n; //the number of observations
int p; //the number of columns in the model matrix
real y[n]; //the response
matrix[n,p] X; //the model matrix
real g; // Zellner scale factor
vector[p] mu; // Zellner prior mean (all zeros)
matrix[p,p] XtXinv; // information matrix

}
parameters {

vector[p] beta; //the regression parameters
real invsigma2; //the precision, a.k.a. inverse-variance

}
transformed parameters {

vector[n] linpred;
cov_matrix[p] Sigma;
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MCMC: with Stan

real sigma;
linpred = X*beta;
sigma = 1/sqrt(invsigma2);
for (j in 1:p){

for (k in 1:p){
Sigma[j,k] = g*sigma^2*XtXinv[j,k];
} } }

model {
beta ~ multi_normal(mu, Sigma);
y ~ normal(linpred, sigma);
invsigma2 ~ gamma(0.5, 1.839); // we took nu0=1, sigma0=1.91

}
")
# do the MCMC, store the results
library("rstan")
stan2 <- stan(file = "FTOexample.stan",
data = list(n=n,p=p, y=y, X=X, g=n, mu=rep(0,p), XtXinv=solve(crossprod(X)) ),
iter = 100000, chains = 1, pars=c("beta","sigma"))

4.25



MCMC: with Stan

Summarize the posterior by summarizing the MCMC samples:
> print(stan2)
Inference for Stan model: FTOexample.
1 chains, each with iter=1e+05; warmup=50000; thin=1;
post-warmup draws per chain=50000, total post-warmup draws=50000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
beta[1] 0.50 0.02 2.47 -4.39 -1.11 0.50 2.10 5.39 13849 1
beta[2] 1.48 0.03 3.50 -5.42 -0.80 1.47 3.78 8.43 13720 1
beta[3] 2.13 0.01 0.75 0.65 1.64 2.13 2.61 3.61 14000 1
beta[4] 2.56 0.01 1.06 0.46 1.87 2.56 3.24 4.65 14015 1
sigma 3.39 0.00 0.55 2.52 3.00 3.32 3.70 4.66 20814 1
lp__ -40.95 0.01 1.64 -45.04 -41.79 -40.61 -39.75 -38.79 16583 1

> # compare with the non-Bayes version
> round(cbind(summary(lm(y~xg*xa))$coef[,1:2], confint(lm(y~xg*xa))), 2)

Estimate Std. Error 2.5 % 97.5 %
(Intercept) 0.49 1.06 -1.75 2.73
xg 1.59 1.49 -1.57 4.76
xa 2.24 0.32 1.57 2.92
xg:xa 2.68 0.45 1.72 3.63
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MCMC: with Stan

Why are the estimates

similar but the intervals

so different?

Here are the prior and

posterior for σ;
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The ‘best guess’ estimate is σ̂ = σ0 = 1.91 – but the prior also supports much

larger values – with which the data don’t strongly disagree.

4.27



MCMC: with Stan

To see where the

‘chain’ went...

> traceplot(stan2)

Tip: save these plots as

PNGs not PDFs!
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MCMC: with Stan

With the posterior samples in R, we can evaluate the posterior of any function

of them. For example, the genetic effect at each of the five ages;

E[Y |age,+/− ]−E[Y |age,−/− ] = (β1+β2)+(β3+β4)×age−(β1+β3×age) = β2+β4×age
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MCMC: summary so far

• Stan - and other similar software - may look like overkill for this ‘conjugate’

problem, but Stan can provide posteriors for almost any model

• The ‘modeling’ language is based on R

• Users do have to decide how long a chain to run, and how long to ‘burn in’

for at the start of the chain. These are not easy to answer! We’ll see some

diagnostics in later sessions
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Summary

• Linear regressions are of great applied interest

• Conjugacy helps us quickly explore how informative the prior is, versus the

data

• ...but with MCMC we can fit a huge variety of models

• Inference using MCMC output is also flexible; no restriction on parameters

we can learn about
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Bonus tracks: what if the model’s wrong? (***)

Different types of violation—in decreasing order of how much they typically

matter in practice

• Just have the wrong data (!) i.e. not the data you claim to have

• Observations are not independent, e.g. repeated measures on same mouse

over time

• Mean model is incorrect

• Error terms do not have constant variance

• Error terms are not Normally distributed

Having the wrong data, where possible, should be addressed before analyses.

Here we’ll focus on how much post-analysis violations matter.
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Wrong model: dependent outcomes

• Observations from the same mouse are more likely to be similar than those

from different mice (even if they have same age and genotype)

• SBP from subjects (even with same age, genotype etc) in the same family are

more likely to be similar than those in different familes – perhaps unmeasured

common diet?

• Spatial and temporal relationships also tend to induce correlation

If the pattern of relationship is known, can allow for it – typically in “random

effects modes” – see later session.

If not, treat results with caution! Precision is likely over-stated.
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Wrong model: mean model

Even when the scientific background is highly informative about the variables of
interest (e.g. we want to know about the association of Y with x1, adjusting for
x2, x3...) there is rarely strong information about the form of the model

• Does mean weight increase with age? age2? age3?
• Could the effect of genotype also change non-linearly with age?

Including quadratic terms is a common approach – but quadratics are sensitive
to the tails. Instead, including “spline” representations of covariates allows the
model to capture many patterns.

Including interaction terms (as we did with xi,2 × xi,3) lets one covariate’s effect
vary with another.

(Deciding which covariates to use is addressed in the Model Choice session.)
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Wrong model: non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to
measure, i.e. more variables. Or perhaps the FTO variant affects weight
regulation — again, more variance.

• Having different variances at different covariate values is known as het-
eroskedasticity
• Unaddressed, it can result in over- or under-statement of precision

The most obvious approach is to model the variance, i.e.

Yi = βββTxi + εi,

εi ∼ Normal(0, σ2
i ),

where σi depends on covariates, e.g. σhomozy and σheterozy for the two genotypes.

Of course, these parameters need priors. Constraining variances to be positive
also makes choosing a model difficult in practice.
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Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or non-

constant variance is available – but it relies on interest in linear ‘trends’. Formally,

we can define parameter

θθθ = argmin Ex
[(
Ey[y|x]−XXXtθθθ

)2
]
,

i.e. the straight line that best-captures random-sampling, in a least-squares sense.

• This ‘trend’ can capture important features in how the mean y varies at

different x

• Fitting extremely flexible Bayesian models, we get a posterior for θθθ

• The posterior mean approaches β̂ββols, in large samples

• The posterior variance approaches the ‘robust’ sandwich estimate, in large

samples (details in Szpiro et al, 2011)
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Robust standard errors (in Bayes)

The OLS estimator can be written as β̂ββols = (XXXTXXX)−1XXXTy =
∑n
i=1 ciyi, for

appropriate ci.

True variance Var[ β̂ ] =
∑n
i=1 c

2
i Var[Yi ]

Robust estimate V̂arR[ β̂ ] =
∑n
i=1 c

2
i e

2
i

Model-based estimate V̂arM [ β̂ ] = Mean(e2
i )
∑n
i=1 c

2
i ,

where ei = yi − xTi β̂ββols, the residuals from fitting a linear model.

Non-Bayesian sandwich estimates are available through R’s sandwich package –

much quicker than Bayes with a very-flexible model. For correlated outcomes,

see the GEE package for generalizations.
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Wrong model: Non-Normality

This is not a big problem for learning about population parameters;

• The variance statements/estimates we just saw don’t rely on Normality

• The central limit theorem means that β̂ββ ends up Normal anyway, in large

samples

• In small samples, expect to have limited power to detect non-Normality

• ... except, perhaps, for extreme outliers (data errors?)

For prediction – where we assume that outcomes do follow a Normal distribution

– this assumption is more important.
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