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INn this session

e An important conjugacy result — Normal prior, Normal likelihood

e Linear regression — the standard approach for continuous outcomes (this
material mostly review?)

e Bayesian linear regression
e A first look at Markov Chain Monte Carlo — much more in later sessions
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Normal prior, Normal likelihood

The best-known and most widely-used statistical is the Normal or Gaussian
distribution, denoted N(u,c?) for mean p and variance o2.

In sampling distributions, approximately
Normal observations are expected when the
variable is the sum of many similarly-sized
small influences (e.g. height as a sum of
SNP effects). This is called the Central
Limit Theorem.

In priors, Normals are a convenient way to state beliefs, mainly because they're
so familiar. They can also make some calculations easier (which is why Gauss
liked them).
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Normal prior, Normal likelihood: conjugacy

If Y7,...Y, are a random sample from N(6,02) with Posterior
known variance o2: - Likelinood
prior 0 ~ N(pg,T2) g
sampling model Y ~ N(6,02) g
then posterior 4|Y ~ N (wY—I— (1—w)uo,1+#n>
2t
n_ | |
where w =% o v
7%4‘0—2 0

Posterior mean is a weighted average of prior mean and sample mean
Weights are o« precision, i.e. 1/variance.

Posterior precision = prior precision 4+ precision from data

With large n Bayes gives essentially standard result: point estimate Y, 95%

interval is Y 4+ 1.960/+/n. With tiny n, posterioraprior.
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FTO example: design

We'll soon use a version of Normal/Normal conjugacy in an analysis of the FTO
gene, involved in growth and obesity.

Experimental design:
e 10 fto+ /— mice 16-week-old
e 10 fto— /— mice
e Mice are sacrificed at the end 4-week-old
of 1-5 weeks of age (not 16 Postnatalday 5
weeks, as here)

e TwWO mice in each group are
sacrificed at each age

e n = 20 overall, so a small but
well-controlled study

Fto'* Fto**




FTO example:

data

weight ()

25

20

15

10

e fto—-/—-
o fto+/—-

I
3
age (weeks)
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FTO example: critical modeling assumption

In this example:

e Y — weight, which will be Normal conditional on covariate-specific mean
e r, = indicator of fto heterozygote € {0,1} = number of “+4" alleles
e r, = age in weeks € {1,2,3,4,5}

T he critical modeling choice is how mean Y depends on the covariates. Without
further assumptions, we could choose to model E[Y|X = x] as

age (weeks)
genotype | 1 2 3 4 5
—/— 1001 602 003 6o4 005
+/— 011 012 013 014 015
This can’t be ‘wrong’ — there is a mean weight for each genotype at each age —
but we'd need to estimate 10 parameters from n = 20 data points.
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Linear regression

But pragmatically, we instead assume smoothness in mean weight as a function
of age. For each group, we assume

E[Y|Xq = xa] = ag + a1x4
for some unknown ag and «q, that we’ll estimate.

e Now we can borrow strength across the ages. For example, the difference in
4-5 week mice weights tells us about the difference in 1-2 week weights
e Can also write the assumption as

y:a0+alﬂ3a+€a

where e¢ is some mean-zero ‘noise’

e A more complex linear regression might assume e.g9. y = ag + a1xq +a2x§ +
043:132 + ¢, — linearity means “linear in the parameters’, i.e. adding several
covariates, each multiplied by its own « coefficient.
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Multiple linear regression

We can also create variables, to describe models for both groups simultaneously:

xr;1 = 1 for each subject ¢

r;» = O if subject ¢ is homozygous, 1 if heterozygous
r;3 = age of subject i, in weeks

Ti4 — 32 X T;3

E[Y; X =x] = Bix;1 + Pox; 2+ B3z; 3 + Bax; 4,
...or write this as Y; B1x; 1+ Box; o+ B3w; 3+ Baw;a+ €

for some mean-zero ¢;. Note that under this model,

E[Y |z, ]
E[Y|z]

B1 + B3 x age if zo =0, and
(B1+ B2) + (B3 + B4) x age if zo0 = 1.
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Multiple linear regression

For graphical
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Normal linear regression

How do the Y, vary around E[Y;|8,x;], 7

Y, = Blz;+¢
€1,...,€n ~ i.i.d. Normal(0,c?).

Assuming independent identically-distributed Nor-
mal errors gives the likelihood:

n
(Y1, unl®1, . @0, B,0%) = [ p(uilzi,B,o?)
1=1
2 2 I T \2
= (2n0?) " 2exp |~ 75 3 (i — BT x))

1=1
Note: in large(r) sample sizes, what we learn about the 3; is “robust” to the
Normality assumption—but with n = 20 we do rely on the mean being linear in
the x's, and on the ¢;'s variance o2 being constant with respect to =.
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Linear regression: non-Bayes methods (*)

What values of B are consistent with our data y,X? Recall that

1

n
p(y17 - 7yn|$17 <o wn7ﬂ7 02) — (QWUQ)_n/QeXp{_T‘_Q Z (y?, — :BTw’i)Q}'
1=1

This is big when SSR(8) = Y (y; — BLx;)? is small. It can also be written as

SSR(B) = Y (y; — Bl x;)? = (y — XB)  (y — XB) = y'y — 28" X y + BT X X8,
1=1

where we use matrix notation, i.e.

Y1 xr1 — 61 ( zi B \ B1xr11+ -+ Bpriyp
y = y:2 XB = 332:—> 5:2 _ x5 B _ | P2zt . + Bpro 4
Yn Ty — Bp \ 1.8 B1xn1 + -+ BpTnp
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Linear regression: non-Bayes methods (*, almost)

Classical linear regression uses the B that makes SSR smallest, i.e. finds the
‘best-fitting’ model. To minimize SSR, ‘recall’ that...

1. a minimum of a function ¢g(z) occurs at a value z such that d%g(z) = 0;
2. the derivative of g(z) = az is a and the derivative of g(z) = bz2 is 2bz.

d d
Doing this for SSR... —SSR(B)

a T ~pTyT TyT
B 5 W'y 28Xy + BIXIXp)
= —2XTy 4+ 2XTX8 |

—2XTy +2XIXB =0

d

d so —SSR(B) =0
and so B (B) &
s XIXg=XTy = p=XX)"1xy.

Boie = (XIX)~IXTy is the Ordinary Least Squares (OLS) estimator of B.
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Linear regression: non-Bayes methods in R

### OLS estimate

> beta.ols <- solve( t(X)%*%X )%x%t (X)%*hy

> beta.ols

[,1]
(Intercept) -0.06821632
Xg 2.94485495
xa 2.84420729
Xg:xa 1.72947648

### or less painfully, using 1m() and R’s formula syntax:
> fit.ols<-1m( y~ xg*xa )

> coef( summary(fit.ols) )

Estimate
(Intercept) -0.06821632
Xg 2.94485495
xa 2.84420729
Xg:xa 1.72947648

Std. Error
1.4222970
2.0114316
0.4288387
0.6064695

t value Pr(>|tl)

-0.04796208 9.623401e-01

1.46405917 1.625482e-01
6.63234803 5.760923e-06
2.85171239 1.154001e-02
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Linear regression: non-Bayes methods in R

weight

1 2

> coef ( summary(fit.ols) )

Estimate
(Intercept) -0.06821632
Xg 2.94485495
xa 2.84420729
Xg:xa 1.72947648

Std. Error t value Pr(>|tl)
1.4222970 -0.04796208 9.623401e-01
2.0114316 1.46405917 1.625482e-01
0.4288387 6.63234803 5.760923e-06
0.6064695 2.85171239 1.154001e-02

(The classic version esti-
mates the standard error of
each 8, and gives p-values
indicating how significantly
they differ from zero. t;
denotes j3;/Est.StdErr[3;],
which has a t distribution if

8;=0.)
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Multivariate Normal distribution

Before Bayesian linear regression, a final piece of math
notation.

The multivariate Normal distribution describes ran- /.|y
dom vectors. For mean m and variance matrix* V, it
is written mvn(m, V) — see right for an example:

o onst

So we can write a full linear regression model as just

130 _ 150 170

2 2
ylx7ﬂ70- van(X,B,O' I)7 70 90 1;‘s?,sto\'\cBP

where o2 is the (assumed-constant) variance of each observation around its mean,
and I denotes an identity matrix, with 1s on the diagonal and O elsewhere.

* For random vector Y;, variance matrix Var[Y ] has diagonal elements Var[Y;] and off diagonal

elements Cov[Y;,Y;]
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Bayesian inference for linear regression models

With o2 known, Normal priors for B are conjugate. With

prior B ~ mvn(Bo, o)
sampling model Yy ~ mvn(XB, o21)
then posterior Bly, X ~ mvn(Bn, >Xn),
where >, = VarBly,X, 02 = (Tt +XTX/02)~1

Bn = EBly,X, 0°

(Tt +XTX/02) " 1(Z5 B0 + XTy/0?).

e Posterior precision (inverse-variance) is the sum of precision from prior and
sampling model

e Posterior mean is a kind of weighted average of prior mean on BOLS, with
precision/inverse-variance weights

o If 51 < XIX/5?, then Bn = B, if Tgt > XTX/02, then By ~ By — sensibly
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The g-prior

But how to pick Bg,2>g? A classical suggestion (Zellner, 1986) uses the g-prior:
B ~ mvn(0, go2(XTX)™1).
Why this variance? The variance of the OLS estimate B, is

2
VarBy, = o2(XTX)~1 = Z-(XTX/n) 1,
n
which can be thought of as (roughly) the uncertainty in 8 from n observations.

In the g-prior the variance is

0.2
n/g

which can be viewed as the uncertainty from n/g observations.

go?(XIX)~t = Z——(XIX/n)"1,

For example, g = n means the prior has the same amount of info as 1 observation
— so (roughly!) not much, in a large study.
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Posterior distributions under the g-prior

Following the conjugacy results, with o2 known it turns out that

Bly, X, o2~ mvn(Bn, >Xn),

where ¥, = Var[Bly,X,02] = — 7 s2XTX)"1
g+1
Bn =E[Bly,X,0?] = —I_(XTX)"1XTy
g+1

e The posterior mean estimate B8y is simply g_FLles.
e The posterior variance of B8 is simply g_%lVarBols.

_ : . T s 1 :

. ﬁgznnlﬁn is 4 times smaller than BopsVar[Bors] 18519, the usual signal-
to-noise measure we turn into p-values

e g shrinks the coefficients towards 0 and so can prevent overfitting to the data

e If g x n, then as n increases, inference approximates classical methods.
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Monte Carlo simulation

But o2 is rarely known exactly, so more realistic analysis captures that uncertainty
via a prior. A convenient & popular choice is the inverse-Gamma distribution:

prior 1/02 ~ gamma(vg/2,vgo3/2)
sampling model y ~ mvn(XB,o2I)
posterior 1/02|y,X ~ gamma([vg + nl/2, [vood + SSR¢]/2)

...where SSR, is complicated but basically a sum of squared residuals.

A natural next step is be to use the conjugate posteriors for o and B together —
usually to get the marginal posterior for 8. But this requires integration:

pBly.X) = [, p(B.0%y,X)do? = [ p(Blo® 4, X)p(o?]y,X)do?

2
o
This takes work, and is error-prone. Instead we'll use Monte Carlo methods.
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Monte Carlo simulation

Large sample (points) to estimate posterior (contours)

The Monte Carlo method is
important for Bayesian work;

6,
The big idea: with a large sample from a distribution — e.g. the posterior
— we can approximate any property of that distribution.
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Monte Carlo simulation

0,
It may seem like sampling would

require full knowledge of the
posterior, and be at least as much
work as the integration.

But this isn't true: one way to
do it is the Gibbs Sampler — here
shown for two examples

0, 0,
Gibbs updates parameters ‘one at a time’, using only p(01|65), then p(65]01) — so

no hard integration to do. The sequence of samples 6(s) (a Markov Chain) are
autocorrelated, i.e. dependent, but the posterior IS covered appropriately.
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Monte Carlo simulation

Recall the posterior can be written as p(01,05]Y) = p(65]Y) x p(01]62,Y), so if
we can generate from conditional p(61|62,Y) — in one variable — with frequency
p(0>2]Y) for each 65, we get a sample from the full posterior.

Gibbs does this, using just the conditionals, iterating between these steps:
—1
03 ~ p(011651,Y)
050 ~ p(6216%” ,Y)
to produce a chain (9&0),950)), (9%1),99)),..., (9&8),9?)),...

e If the chain is long enough (s — o00), this sequence is a sample from p(61,605|Y),

no matter where you started
e For more parameters, update each single 0, in turn, then start again
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MCMC: with Stan

Stan works out all the condition-
als for us, and how to update
based on them ;

e Specify just a model, including priors, and tell Stan what the data are

e Stan writes code to sample from the posterior, by ‘walking around’ — actually
it runs the No U-Turn Sampler, a more advanced algorithm for exploring the
parameter space

e Stan runs this code, and reports back all the samples

e [ he rstan package lets you run chains from R

e Some modeling limitations — no discrete parameters — but becoming very
popular; works well with some models where other software would struggle

e Requires declarations (like C++4) — unlike R — so models require a bit more
typing...
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MCMC: with Stan

For our linear regression, with unknown o2

cat (file="FTOexample.stan", "
data {
int n; //the number of observations
int p; //the number of columns in the model matrix
real y[n]; //the response
matrix[n,p] X; //the model matrix
real g; // Zellner scale factor
vector[p] mu; // Zellner prior mean (all zeros)
matrix[p,p] XtXinv; // information matrix

}

parameters {
vector [p] beta; //the regression parameters
real invsigma2; //the precision, a.k.a. inverse-variance

¥

transformed parameters {
vector[n] linpred;
cov_matrix[p] Sigma;
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MCMC: with Stan

real sigma;
linpred = X*beta;
sigma = 1/sqrt(invsigma?);
for (j in 1:p){
for (k in 1:p){
Sigmal[j,k] = gxsigma~2*XtXinv[j,k];
Y}
model {
beta ~ multi_normal(mu, Sigma);
y ~ normal (linpred, sigma);
invsigma2 ~ gamma(0.5, 1.839); // we took nu0=1, sigma0=1.91
}
ll)
# do the MCMC, store the results
library("rstan")
stan2 <- stan(file = "FTOexample.stan",
data = list(n=n,p=p, y=y, X=X, g=n, mu=rep(0,p), XtXinv=solve(crossprod(X)) ),
iter = 100000, chains = 1, pars=c("beta","sigma"))
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MCMC: with Stan

Summarize the posterior by summarizing the MCMC samples:

> print(stan2)
Inference for Stan model: FTOexample.
1 chains, each with iter=1e+05; warmup=50000; thin=1;
post-warmup draws per chain=50000, total post-warmup draws=50000.
mean se_mean sd 2.5 25% 50% 75% 97.5% n_eff Rhat

betal1l] 0.50 0.02 2.47 -4.39 -1.11 0.50 2.10 5.39 13849 1
betal2] 1.48 0.03 3.50 -5.42 -0.80 1.47 3.78 8.43 13720 1
betal3] 2.13 0.01 0.75 0.65 1.64 2.13 2.61 3.61 14000 1
betal4] 2.56 0.01 1.06 0.46 1.87 2.56 3.24 4.65 14015 1
sigma 3.39 0.00 0.55 2.52 3.00 3.32 3.70 4.66 20814 1
lp__ -40.95 0.01 1.64 -45.04 -41.79 -40.61 -39.75 -38.79 16583 1

> # compare with the non-Bayes version
> round(cbind (summary (1m(y~xg*xa))$coef[,1:2], confint(Im(y~xg+*xa))), 2)
Estimate Std. Error 2.5 % 97.5 ¥

(Intercept) 0.49 1.06 -1.75 2.73
Xg 1.59 1.49 -1.567 4.76
xa 2.24 0.32 1.57 2.92
Xg:xa 2.68 0.45 1.72 3.63
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MCMC: with Stan

Why are the estimates g _
similar but the intervals
so different? 2 < posterior
c o

Here are the prior and 3
posterior for o; S

o _|

© | | | | | |

0 2 4 6 8 10
0}

The ‘best guess’ estimate is 0 = og = 1.91 — but the prior also supports much
larger values — with which the data don't strongly disagree.
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MCMC: with Stan

To see where the
‘chain’ went...
> traceplot(stan2)

Tip: save these plots as
PNGs not PDFs!

beta[1] beta[2] beta[3]
201 64
104 4 -
0 21
-10 1 01

5e+045e+047e+08e+00e+041e+05 5e+0Be+047e+0Be+0De+04e+05 5e+045e+047e+08e+0He+041e+05 chain
beta[4] sigma —1

2 -
5e+046e+04e+048e+0De+041e+05 5Se+0Lbe+047e+048e+0DPe+041e+05
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MCMC: with Stan

With the posterior samples in R, we can evaluate the posterior of any function
of them. For example, the genetic effect at each of the five ages;

E[Y|age,+/—]-E[Y|age, —/—] = (B1+52)+(B3+54) xage—(B1+ B3 xage) = Bo+[4 xage

20 -

“§<><><><>

genetic effect (difference in weight)

_10 -

3 4 5
age (weeks)
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MCMC: summary so far

e Stan - and other similar software - may look like overkill for this ‘conjugate’
problem, but Stan can provide posteriors for almost any model

e [ he ‘modeling’ language is based on R

e Users do have to decide how long a chain to run, and how long to ‘burn in’
for at the start of the chain. These are not easy to answer! We'll see some
diagnostics in later sessions
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Summary

e Linear regressions are of great applied interest
e Conjugacy helps us quickly explore how informative the prior is, versus the

data
e ...but with MCMC we can fit a huge variety of models
e Inference using MCMC output is also flexible; no restriction on parameters

we can learn about
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Bonus tracks: what if the model’'s wrong? (k%)

Different types of violation—in decreasing order of how much they typically
matter in practice

e Just have the wrong data (!) i.e. not the data you claim to have

e ODbservations are not independent, e.g. repeated measures on same mouse
over time

e Mean model is incorrect
e Error terms do not have constant variance
e Error terms are not Normally distributed

Having the wrong data, where possible, should be addressed before analyses.
Here we'll focus on how much post-analysis violations matter.
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Wrong model: dependent outcomes

e Observations from the same mouse are more likely to be similar than those
from different mice (even if they have same age and genotype)

e SBP from subjects (even with same age, genotype etc) in the same family are
more likely to be similar than those in different familes — perhaps unmeasured
common diet?

e Spatial and temporal relationships also tend to induce correlation

If the pattern of relationship is known, can allow for it — typically in “random
effects modes’ — see later session.

If not, treat results with caution! Precision is likely over-stated.
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Wrong model: mean model

Even when the scientific background is highly informative about the variables of
interest (e.g. we want to know about the association of Y with x1, adjusting for
x>, x3...) there is rarely strong information about the form of the model

e Does mean weight increase with age? age?? age3?
e Could the effect of genotype also change non-linearly with age?

Including quadratic terms is a common approach — but quadratics are sensitive
to the tails. Instead, including ‘spline’” representations of covariates allows the
model to capture many patterns.

Including interaction terms (as we did with z; o X x; 3) lets one covariate's effect
vary with another.

(Deciding which covariates to use is addressed in the Model Choice session.)
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Wrong model: non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to
measure, i.e. more variables. Or perhaps the FTO variant affects weight
regulation — again, more variance.

e Having different variances at different covariate values is known as het-
eroskedasticity
e Unaddressed, it can result in over- or under-statement of precision

The most obvious approach is to model the variance, i.e.
5/2' — ﬂTx’l, + €35
€ ~ NormaI(O,a,L-Q),

where o; depends on covariates, €.9. Opomozy AN Opeterozy fOr the two genotypes.

Of course, these parameters need priors. Constraining variances to be positive
also makes choosing a model difficult in practice.
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Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or non-
constant variance is available — but it relies on interest in linear ‘trends’. Formally,
we can define parameter

0 = argmin E, [(Ey[y|m] —Xt9)2] :

i.e. the straight line that best-captures random-sampling, in a least-squares sense.

e T his ‘trend’ can capture important features in how the mean y varies at
different x

e Fitting extremely flexible Bayesian models, we get a posterior for 6

e [ he posterior mean approaches BO|S, in large samples

e [ he posterior variance approaches the ‘robust’ sandwich estimate, in large
samples (details in Szpiro et al, 2011)
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Robust standard errors (in Bayes)

The OLS estimator can be written as Bgs = XIX)"IX'y = 37, ¢y, for
appropriate c;.

True variance  Var[B] = Sn_ e?Var[Y;]
Robust estimate Vargp[3] = S cPe?
Model-based estimate Vary/[8] = Mean(e?) X" c?,

where e; = y; — ! Bois, the residuals from fitting a linear model.

Non-Bayesian sandwich estimates are available through R’s sandwich package —
much quicker than Bayes with a very-flexible model. For correlated outcomes,
see the GEE package for generalizations.
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wWrong model: Non-Normality

This is not a big problem for learning about population parameters;

e The variance statements/estimates we just saw don’t rely on Normality

e [ he central limit theorem means that B ends up Normal anyway, in large
samples

e In small samples, expect to have limited power to detect non-Normality

e ... except, perhaps, for extreme outliers (data errors?)

For prediction — where we assume that outcomes do follow a Normal distribution
— this assumption is more important.
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