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Introduction

In this lecture we will discuss Bayesian modeling in the context of
Generalized Linear Models (GLMs).

This discussion will include the addition of random effects, i.e. we’ll
consider the class of Generalized Linear Mixed Models (GLMMs).

Estimation via the quick INLA technique will be demonstrated, along
with its R implementation.

An approximation technique that is useful (in particular) in the context
of Genome Wide Association Studies (GWAS) (in which the number
of rows of data to analyze is large) will also be introduced.

The accompanying R code allows the analyses presented here to be
replicated.
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Motivating Example: Logistic Regression

We consider case-control data for the disease Leber Hereditary Optic
Neuropathy (LHON) disease with genotype data for marker
rs6767450:

CC CT TT Total
x = 0 x = 1 x = 2

Cases 6 8 75 89
Controls 10 66 163 239
Total 16 74 238 328

Let x = 0,1,2 represent the number of T alleles, and p(x) the
probability of being a case, given x copies of the T allele.
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Motivating Example: Logistic Regression

For such case-control data one may fit the multiplicative odds model:

p(x)

1− p(x)
= exp(α)× exp(θx),

with a binomial likelihood.

Interpretation:
I exp(α) is of little interest given the case-control sampling.
I exp(θ) is the odds ratio describing the multiplicative change in

risk for one T allele versus zero T alleles.
I exp(2θ) is the odds ratio describing the multiplicative change in

risk for two T alleles versus zero T alleles.
I The odds ratio exp(θ) approximates the relative risk for a rare

disease.
A Bayesian analysis adds a prior on α and θ.
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Motivating Example: FTO Data

Recall
I Y = weight
I xg = fto heterozygote ∈ {0,1}
I xa = age in weeks ∈ {1,2,3,4,5}

We will fit the model

E[Y |xg, xa] = β0 + βgxg + βaxa + βintxgxa,

with independent normal errors, using INLA.
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GLMs
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Generalized Linear Models

I Generalized Linear Models (GLMs) provide a very useful
extension to the linear model class.

I GLMs have three elements:
1. The responses follow an exponential family.
2. The mean model is linear in the covariates on some scale.
3. A link function relates the mean of the data to the covariates.

I In a GLM the response yi are independently distributed and
follow an exponential family1, i = 1, . . . ,n.

I Examples: Normal, Poisson, binomial.

1so that the distribution is of the form p(yi |θi , α) = exp({yiθi − b(θi )}/α+ c(yi , α)),
where θi and α are scalars
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Generalized Linear Models

I The link function g(·) provides the connection between the mean
µ = E[Y ] and the linear predictor xβ, via

g(µ) = xβ,

where x is a vector of explanatory variables and β is a vector of
regression parameters.

I For normal data, the usual link is the identity

g(µ) = µ = xβ.

I For binary data, a common link is the logistic

g(µ) = log

(
µ

1− µ

)
= xβ.

I For Poisson data, a common link is the log

g(µ) = log (µ) = xβ.
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Bayesian Modeling with GLMs

I For a generic GLM, with regression parameters β and a scale
parameter α, the posterior is

p(β, α|y) ∝ p(y |β, α)× p(β, α).

I An immediate question is: How to specify a prior distribution
p(β, α)?

I How to perform the computations required to summarize the
posterior distribution (including the calculation of Bayes factors)?
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Bayesian Computation

Various approaches to computation are available:
I Conjugate analysis — the prior combines with likelihood in such

a way as to provide analytic tractability (at least for some
parameters).

I Analytical Approximations — asymptotic arguments used
(e.g. Laplace).

I Numerical integration.
I Direct (Monte Carlo) sampling from the posterior, as we have

already seen.
I Markov chain Monte Carlo — very complex models can be

implemented, for example with WinBUGS, JAGS or Stan.
I Integrated nested Laplace approximation (INLA). Cleverly

combines analytical approximations and numerical integration:
we illustrate the use of this method in some detail.
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Integrated Nested Laplace Approximation (INLA)

I The homepage of the INLA software is here:
http://www.r-inla.org/home

I There are also lots of example links at this website.
I The fitting of many common models is described here:

http://www.r-inla.org/models/likelihoods
I INLA can fit GLMs, GLMMs and many other useful model

classes.
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INLA for the Linear Model

I The model is

Y = E[Y |xg, xa] = β0 + βgxg + βaxa + βintxgxa + ε

where ε|σ2 ∼iid N(0, σ2).
I This model has five parameters: the four fixed effects are
β0, βg, βa, βint and the error variance is σ2 (note that in inla

inference is reported for the precision σ−2).
I In general, posterior distributions can be summarized graphically

or via numerical summaries.
I In Figures 1 gives posterior marginal distributions for the fixed

effects under an analysis with relatively flat priors.
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Comparison of OLS and Bayess

# OLS
o ls . f i t <− lm ( l i n y ˜ l i n x g + l i n x a + l i n x i n t , data= f t o d f )
# MLEs and SEs
cbind ( coef ( o l s . f i t ) , s q r t ( d iag ( vcov ( o l s . f i t ) ) ) )

[ , 1 ] [ , 2 ]
( I n t e r c e p t ) −0.06821632 1.4222970
l i n x g 2.94485495 2.0114316
l i n x a 2.84420729 0.4288387
l i n x i n t 1.72947648 0.6064695
# INLA
formula <− l i n y ˜ l i n x g + l i n x a + l i n x i n t
l i n .mod <− i n l a ( formula , data= f t o d f , f a m i l y =” gaussian ” )
# P o s t e r i o r means and SDs
l i n . mod$summary . f i x e d [ c ( 1 , 2 ) ]

mean sd
( I n t e r c e p t ) −0.06162681 1.4255270
l i n x g 2.93325529 2.0135662
l i n x a 2.84237281 0.4298868
l i n x i n t 1.73261901 0.6073410

Virtually identical!
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Figure 1: Marginal distributions of the intercept and regression coefficients.

16 / 51



Bayes Logistic Regression

I The likelihood is

Y (x)|p(x) ∼ Binomial( N(x),p(x) ), x = 0,1,2.

I Logistic link:

log

(
p(x)

1− p(x)

)
= α + θx

I The prior is
p(α, θ) = p(α)× p(θ)

with
I α ∼ N(µα, σα) and
I θ ∼ N(µθ, σθ). where µα, σα, µθ, σθ are constant that are specified

to reflect prior beliefs.

17 / 51



Comparison of MLE and Bayess

# MLE
log i tmod <− glm ( cbind ( y , z ) ˜ x , f a m i l y =” b inomia l ” )
# MLEs and SEs
cbind ( coef ( log i tmod ) , s q r t ( d iag ( vcov ( log i tmod ) ) ) )

[ , 1 ] [ , 2 ]
( I n t e r c e p t ) −1.8076928 0.4553938
x 0.4787428 0.2504594
# INLA
cc .mod <− i n l a ( y ˜ x , f a m i l y =” b inomia l ” , data=cc . dat , N t r i a l s =y+z )
# P o s t e r i o r mean and SD
cc . mod$summary . f i x e d [ c ( 1 , 2 ) ]

mean sd
( I n t e r c e p t ) −1.8069628 0.4553857
x 0.4800092 0.2504597

Virtually identical!
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Prior Choice for Positive Parameters

I It is convenient to specify lognormal priors for a positive
parameter, for example exp(β) (the odds ratio) in a logistic
regression analysis.

I One may specify two quantiles of the distribution, and directly
solve for the two parameters of the lognormal.

I Denote by θ ∼ LogNormal(µ, σ) the lognormal distribution for a
generic positive parameter θ with E[log θ] = µ and
var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of
this prior.

I In our example, θ = exp(β), the odds ratio.
I Then it is straightforward to show that

µ = log(θ1)

(
zq2

zq2 − zq1

)
−log(θ2)

(
zq1

zq2 − zq1

)
, σ =

log(θ1)− log(θ2)

zq1 − zq2

.
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Prior Choice for Positive Parameters

I As an example, suppose that
for the odds ratio eβ we
believe there is a 50% chance
that the odds ratio is less than
1 and a 95% chance that it is
less than 5; with

q1 = 0.5, θ1 = 1.0, q2 = 0.95, θ2 = 5.0,

we obtain lognormal
parameters

µ = 0
σ = (log 5)/1.645 = 0.98.
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Figure 2: Lognormal density with 50%
point 1 and 95% point 5.
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Logistic Regression Example

I In the second analysis we
specify

α ∼ N(0,1/0.1)

θ ∼ N(0,W )

where W is such that the
97.5% point of the prior is
log(1.5) = 0.41, i.e. we
believe the odds ratio lies
between 2/3 and 3/2 with
probability 0.95.

I The marginal posterior
distributions are displayed.
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Figure 3: Posterior marginals for the
intercept α and the log odds ratio θ.
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Comparison of MLE and Bayess

# MLE
log i tmod <− glm ( cbind ( y , z ) ˜ x , f a m i l y =” b inomia l ” )
# MLEs and SEs
cbind ( coef ( log i tmod ) , s q r t ( d iag ( vcov ( log i tmod ) ) ) )

[ , 1 ] [ , 2 ]
( I n t e r c e p t ) −1.8076928 0.4553938
x 0.4787428 0.2504594
# INLA
W <− LogNormalPriorCh (1 ,1 .5 ,0 .5 ,0 .975 ) $sigma ˆ2
cc . mod2 <− i n l a ( y ˜ x , f a m i l y =” b inomia l ” , data=cc . dat , N t r i a l s =y+z ,

c o n t r o l . f i x e d = l i s t (mean . i n t e r c e p t =c ( 0 ) , prec . i n t e r c e p t =c ( . 1 ) ,
mean=c ( 0 ) , prec=c ( 1 /W) ) )

cc . mod2$summary . f i x e d [ c ( 1 , 2 ) ]
mean sd

( I n t e r c e p t ) −1.322757 0.2895597
x 0.198683 0.1535503

Big changes!
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GLMMs
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Smoothing

When faced with estimation n different quantities of the prevalence
under different conditions, there are three model choices:

I The true underlying prevalence risks are ALL THE SAME.
I The true underlying prevalence risks are DISTINCT but not

linked.
I The true underlying prevalence risks are SIMILAR IN SOME

SENSE.

The third option seems plausible when the conditions are related, but
how do we model “similarity”?
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Smoothing

There are a number of possibilities for SMOOTHING models:

I The prevalences are drawn from some COMMON probability
distribution, but are not ordered in any way. We refer this as the
independent and identically distributed, or IID model. We could
think of this as saying we think the prevalences are likely to be of
the same order of magnitude.

I The prevalences are CORRELATED over time.

These are both examples of HIERARCHICAL or RANDOM
EFFECTS MODELS — a key element is estimating the SMOOTHING
PARAMETER.
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Smoothing over Time

Rationale and overview of models for temporal smoothing:
I We often expect that the true underlying prevalence in a study

region will exhibit some degree of smoothness over time.
I A linear trend in time is unlikely to be suitable for more than a

small number of years, and higher degree polynomials can
produce erratic fits.

I Hence, local smoothing is preferred.
I Splines and random walk models have proved successful as

local smoothers.
I And to emphasize again, in either approach, the choice of

smoothing parameter is crucial.
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Random Walk Models
We use random walk models which encourage the mean responses
(e.g., prevalences) across time to not deviate too greatly from their
neighbors.

The true underlying mean of the prevalence at time t is modeled as a
function of its neighbors:

µt | µNE(t) ∼ N(mt , vt ),

where
I µt is the mean prevalence (or some function of it such as the

logit) at time t .
I µNE(t) is the set of neighboring means – with the number of

neighbors chosen depending on the model used – typically 2 or
4.

I mt is the mean of some set of neighbors – for a first order
random walk or RW1 it is simply 1

2 (µt−1 + µt+1).
I vt is the variance, and depends on the number of neighbors – for

the RW1 model it is σ2/2, where σ2 is a smoothing parameter –
small values give large smoothing.
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Random Walk Models

I The smoothing parameter σ2 is estimated from the data, and
determines the extent deviations from the mean are penalized.

I The penalty term for the RW1 model is:

p(µt | µt−1, µt+1, σ
2) ∝ exp

{
− 1

2σ2

[
µt − 1

2 (µt−1 + µt+1)
]2}

.

I Hence:
I Values of µt that are close to 1

2 (µt−1 + µt+1) are favored (higher
density).

I The relative favorability is governed by σ2 – if this variance is small,
then µt can’t stray too far from its neighbors.

I Predictions from the RW1 are

µT+S|µ1, . . . , µT , σ
2 ∼ N(µT , σ

2 × S).
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RW2 Model

I The second order RW (RW2) model produces smoother
trajectories than the RW1, and has more reasonable short term
predictions, which is desirable for modeling child prevalence.

I In terms of second differences:

(µt − µt−1)− (µt−1 − µt−2) ∼ N( 0, σ2 ),

showing that deviations from linearity are discouraged.
I Forecasts S steps ahead have a normal distribution with mean:

E[µT+S | µ1, . . . , µT ] = µT + S(µT − µT−1)

which is a linear function of the values at the last two time points.
I The variance is

var(µT+S | µ1, . . . , µT ) =
σ2

6
× S(S + 1)(2S + 1)

which is cubic in the number of periods S, so blows up very
quickly.

30 / 51



0 20 40 60 80 100

6
8

10
12

14

Time (years)

N
ile

 V
ol

um
e 

(S
ca

le
d)

Smoothing Parameter:

Very Small

Medium

Very Large

Random Walk of Order 1 (RW1) Fits

Figure 5: Nile data with RW1 fits under different priors for smoothing
parameter σ−2.

31 / 51



0 20 40 60 80 100

6
8

10
12

14

Time (years)

N
ile

 V
ol

um
e 

(S
ca

le
d)

Smoothing Parameter:

Very Small

Medium

Very Large

Random Walk of Order 2 (RW2) Fits

Figure 6: Nile data with RW2 fits under different priors for smoothing
parameter σ−2.

32 / 51



Temporal Smoothing Model Summary

We have three models:

IID MODEL:
µt ∼ N(0, σ2),

smooth towards zero.
RW1 MODEL:

µt − µt−1 ∼ N(0, σ2),

smooth towards the previous value.
RW2 MODEL:

(µt − µt−1)− (µt−1 − µt−2) ∼ N(0, σ2),

smooth towards the previous slope.
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RW Fitting to Simulated Data

I We illustrate fitting with the RW2 model, using the simulated data
seen earlier.

I The model is:

Yt |pt ∼ Binomial(nt ,pt )
pt

1− pt
= exp(α + φt )

(φ1, . . . , φT ) ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter
α ∼ Prior on Intercept
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RW Fitting to Simulated Data

I Fit using R-INLA.

n1 <− 10
p <− 0.2
t ime <− seq (1 ,60)
# Simulate data
y1 <− rbinom ( leng th ( t ime ) , n1 , p )
i n l a d f 1 <− data . frame ( y1=y1 , t ime=t ime )
# Def ine model
formula1s = y1 ˜ f ( t ime , model =” rw2 ” )
f i t 1 s <− i n l a ( formula1s , data= in l ad f 1 ,

f a m i l y =” b inomia l ” , N t r i a l s =n1 ,
c o n t r o l . p r e d i c t o r = l i s t ( compute=TRUE) )

I On Figures 7 and 8 the fitted values are shown in red – in both
the constant prevalence and curved prevalence cases, the
reconstruction is reasonable.
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Figure 7: Prevalence estimates over time from simulated data, true
prevalence p = 0.2 (blue solid lines). Smoothed random walk estimates in
red.
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Figure 8: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line. Smoothed random walk
estimates in red.
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Approximate Bayes
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Approximate Bayes Inference

I Particularly in the context of a large number of experiments, a
quick and accurate model is desirable.

I We describe such a model in the context of a GWAS.
I This model is relevant when the sample size in each experiment

is large.
I We first recap the normal-normal Bayes model.
I Subsequently, we describe the approximation and provide an

example.
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Recall: The Normal-Normal Model

The model:
I Prior: θ ∼ N(m, v) and
I Likelihood: Y1, . . . ,Yn|θ ∼ N(θ, σ2).

Posterior p(θ|y1, . . . , yn) is normal with

var(θ|y1, . . . , yn) = [1/v + n/σ2]−1

and

E[θ|y1, . . . , yn] =
m/v + ȳn/σ2

1/v + n/σ2

= m
(

1/v
1/v + n/σ2

)
+ ȳ

(
n/σ2

1/v + n/σ2

)
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A Normal-Normal Approximate Bayes Model

I Consider again the logistic regression model

log
(

pi

1− pi

)
= α + xiθ

with interest focusing on θ.
I We require priors for α, θ, and some numerical/analytical

technique for estimation/Bayes factor calculation.
I Wakefield (2007, 2009) considered replacing the likelihood by

the asymptotic distribution of the MLE, to give posterior:

p(θ|θ̂) ∝ p(θ̂|θ)p(θ)

where
I θ̂|θ ∼ N(θ,V ) – the asymptotic distribution of the MLE,
I θ ∼ N(0,W ) – the prior on the log RR. Can choose W so that 95%

of relative risks lie in some range, e.g. [2/3,1.5].
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Posterior Distribution

I Under this model, the posterior distribution for the log odds ratio
θ is

θ|θ̂ ∼ N(r θ̂, rV )

where
r =

W
V + W

.

I Hence, we have shrinkage to the prior mean of 0.
I The posterior median for the odds ratio is exp(r θ̂) and a 95%

credible interval is
exp(r θ̂ ± 1.96

√
rV ).

I Note that as W →∞ and/or V → 0 (which occurs as we gather
more data) the non-Bayesian point and interval estimates are
recovered (since r → 1).
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A Normal-Normal Approximate Bayes Model

I We are interested in the hypotheses: H0 : θ = 0, H1 : θ 6= 0 and
evaluation of the Bayes factor

BF =
p(θ̂|H0)

p(θ̂|H1)
.

I Using the approximate likelihood and normal prior we obtain:

Approximate Bayes Factor =
1√

1− r
exp

(
−Z 2

2
r
)
,

with Z = θ̂√
V

, r = W
V+W .
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A Normal-Normal Approximate Bayes Model

I The approximation can be combined with a
Prior Odds = π0/(1− π0) to give

Posterior Odds on H0 =
BFDP

1− BFDP
= ABF× Prior Odds

where BFDP is the Bayesian False Discovery Probability.
I BFDP depends on the power, through r .
I For implementation, all that we need from the data is the Z -score

and the standard error
√

V , or a confidence interval.
I Hence, published results that report confidence intervals can be

converted into Bayes factors for interpretation.
I The approximation relies on sample sizes that are not too small,

so the normal distribution of the estimator provides a good
summary of the information in the data.
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Combination of Data Across Studies
I Suppose we wish to combine data from two studies where we

assume a common log odds ratio θ.
I The estimates from the two studies are θ̂1, θ̂2 with standard

errors
√

V 1 and
√

V 2.
I The Bayes factor is

p(θ̂1, θ̂2|H0)

p(θ̂1, θ̂2|H1)
.

I The approximate Bayes factor is

ABF(θ̂1, θ̂2) = ABF(θ̂1)× ABF(θ̂2|θ̂1) (1)

where

ABF(θ̂2|θ̂1) =
p(θ̂2|H0)

p(θ̂2|θ̂1,H1)

and
p(θ̂2|θ̂1,H1) = Eθ|θ̂1

[
p(θ̂2|θ)

]
so that the density is averaged with respect to the posterior for θ.

I Important Point: The Bayes factors are not independent.
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Combination of Data Across Studies

I This leads to an approximate Bayes factor (which summarizes
the data from the two studies) of

ABF(θ̂1, θ̂2) =

√
W

RV1V2
exp

{
−1

2

(
Z 2

1 RV2 + 2Z1Z2R
√

V1V2 + Z 2
2 RV1

)}
where

I R = W/(V1W + V2W + V1V2)

I Z1 = θ̂1√
V1

and

I Z2 = θ̂2√
V2

are the usual Z statistics.

I The ABF will be small (evidence for H1) when the absolute
values of Z1 and Z2 are large and they are of the same sign.

Stephens (2017) extends the ABF approach in an interesting way, as
we will see in Lecture 9.
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Example of Combination of Studies in a GWAS

I We illustrate how reported confidence intervals can be converted
to Bayesian summaries.

I Frayling et al. (2007) report a GWAS for Type II diabetes.
I For SNP rs9939609:

Pr(H0|data) with prior:
Stage Estimate (CI) p-value − log10 BF 1/5,000 1/50,000
1st 1.27 (1.16–1.37) 6.4× 10−10 7.28 0.00026 0.0026
2nd 1.15 (1.09–1.23) 4.6× 10−5 2.72 0.905 0.990
Combined – – 13.8 8× 10−11 8× 10−10

I Combined evidence is stronger than each separately since the
point estimates are in agreement.

I For summarizing inference the (5%, 50%, 95%) points for the RR
are:

Prior 1.00 (0.67–1.50)
First Stage 1.26 (1.17–1.36)
Combined 1.21 (1.15–1.27)
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Conclusions

I Computationally GLMs and GLMMs can now be fitted in a
relatively straightforward way.

I INLA is very convenient and is being constantly improved.
I As with all analyses, it is crucial to check modeling assumptions

(and there are usually more in a Bayesian analysis).
I Markov chain Monte Carlo provides an alternative for

computation. Stan, WinBUGS and JAGS are possibilities.
I Complex models may require specialized code.
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Combination of Data Across Studies: The General
Case

I Suppose we have K studies with estimates θ̂k and asymptotic
variances Vk , k = 1, ...,K .

I Assume a common underlying parameter θ.
I The Bayes factor is given by

BFK =
p(θ̂1, . . . , θ̂K |H0)

p(θ̂1, . . . , θ̂K |H1)

=

∏K
k=1(2πVk )

−1/2 exp
(
− θ̂2

k
2Vk

)
∫ ∏K

k=1(2πVk )−1/2 exp

(
− (θ̂2

k−θ)
2

2Vk

)
(2πW )−1/2 exp

(
− θ2

2Vk

)
dθ

=

√√√√W

(
W−1 +

K∑
k=1

V−1
k

)
exp

−1
2

(
K∑

k=1

θ̂k

Vk

)2(
W−1 +

K∑
k=1

V−1
k

)−1

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Combination of Studies: The General Case

I The posterior is given by

θ|θ̂1, . . . , θ̂K ∼ N(µ, σ2)

where

µ =

(
K∑

k=1

θ̂k

Vk

)(
W−1 +

K∑
k=1

V−1
k

)−1

σ2 =

(
W−1 +

K∑
k=1

V−1
k

)−1

51 / 51


	Introduction and Motivating Examples
	Generalized Linear Models
	Bayes Linear Model
	Bayes Logistic Regression

	Generalized Linear Mixed Models
	Temporal Smoothing

	Approximate Bayes Inference
	The Approximation

	Appendix

