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Introduction

In this lecture we will discuss Bayesian modeling in the context of
Generalized Linear Models (GLMs).

This discussion will include the addition of random effects, i.e. we’ll
consider the class of Generalized Linear Mixed Models (GLMMs).

Estimation via the quick INLA technique will be demonstrated, along
with its R implementation.

An approximation technique that is useful (in particular) in the context
of Genome Wide Association Studies (GWAS) (in which the number
of rows of data to analyze is large) will also be introduced.

The accompanying R code allows the analyses presented here to be
replicated.

A complex mixture model for ASE is included in the Appendix, to
illustrate some of the flexibility of Bayes modeling.
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Motivating Example: Logistic Regression

We consider case-control data for the disease Leber Hereditary Optic
Neuropathy (LHON) disease with genotype data for marker
rs6767450:

CC CT TT Total
x = 0 x = 1 x = 2

Cases 6 8 75 89
Controls 10 66 163 239
Total 16 74 238 328

Let x = 0,1,2 represent the number of T alleles, and p(x) the
probability of being a case, given x copies of the T allele.

5 / 95



Motivating Example: Logistic Regression

For such case-control data one may fit the multiplicative odds model:

p(x)

1− p(x)
= exp(α)× exp(θx),

with a binomial likelihood.

Interpretation:
I exp(α) is of little interest given the case-control sampling.
I exp(θ) is the odds ratio describing the multiplicative change in

risk for one T allele versus zero T alleles.
I exp(2θ) is the odds ratio describing the multiplicative change in

risk for two T alleles versus zero T alleles.
I Odds ratios approximate the relative risk for a rare disease.

A Bayesian analysis adds a prior on α and θ.
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Motivating Example: FTO Data

Recall
I Y = weight
I xg = fto heterozygote ∈ {0,1}
I xa = age in weeks ∈ {1,2,3,4,5}

We will examine the fit of the model

E[Y |xg, xa] = β0 + βgxg + βaxa + βintxgxa,

with independent normal errors, and compare with a Bayesian
analysis.
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Motivating Example: RNA Seq with Replicates

I We report an experiment carried out in a previous collaboration,
see Connelly et al. (2014) for further details.

I Start with two haploid yeast strains (individuals).
I From these we obtain RNA-Seq data, where we isolate RNA

from the two individuals, fragment and sequence it using
next-generation sequencing, and map the sequencing reads
back to the genome to generate RNA levels in the form of counts
of the number of sequencing reads mapping at each gene.

I Also mate the two haploid yeast strains together to form a diploid
hybrid. We again isolate RNA, fragment, and sequence it.

I Then take advantage of polymorphisms between the two strains
in order to map reads to either of the two haploid individuals,
giving us counts for the number of reads mapping to either one of
the parental genomes in the diploid hybrid for each gene.
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Motivating Example: RNA Seq with Replicates

I We are interested in two questions from this data. First, we want
to look for evidence of trans effects at each gene; in biological
terms, this means that polymorphisms located far from the gene
are responsible for differences in RNA levels.

I To detect this, look for genes where the difference between RNA
levels in the haploids differs from the difference between RNA
levels for the two parental strains in the diploid.

I The question we concentrate on looking for cis effects, these are
polymorphisms near the gene itself that are responsible for
differences in RNA levels.

I We can detect cis effects as a difference in the count of reads
mapping to each of the parental strains in the diploid at a gene,
is the probability of arising from the two parents, 0.5?
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Motivating Example: RNA Seq Data, Statistical Model

There are two replicates and so for each of N genes we obtain two
sets of counts.

For the diploid hybrid let :
I Yij be the number of A alleles for gene i and replicate j , and
I Nij is the total number of counts, so that Nij − Yij is the number of

T alleles j = 1,2.
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Motivating Example: RNA Seq Data, Statistical Model

We fit a random effects logistic regression model starting with first
stage:

Yij |Nij ,pij ∼ Binomial(Nij ,pij )

so that pij is the probability of seeing an A read for gene i and
replicate j .

At the second stage:

pij

1− pij
= exp(θi + εij ),

where
εij ∼ N(0, σ2),

represent random effects that allow for excess-binomial variation.

In the model θi is a parameter of interest – if a (say) 95% posterior
interval estimate contains 0 then we have evidence of cis effects.
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GLMs
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Generalized Linear Models

I Generalized Linear Models (GLMs) provide a very useful
extension to the linear model class.

I GLMs have three elements:
1. The responses follow an exponential family.
2. The mean model is linear in the covariates on some scale.
3. A link function relates the mean of the data to the covariates.

I In a GLM the response yi are independently distributed and
follow an exponential family1, i = 1, . . . ,n.

I Examples: Normal, Poisson, binomial.

1so that the distribution is of the form p(yi |θi , α) = exp({yiθi − b(θi )}/α+ c(yi , α)),
where θi and α are scalars
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Generalized Linear Models

I The link function g(·) provides the connection between the mean
µ = E[Y ] and the linear predictor xβ, via

g(µ) = xβ,

where x is a vector of explanatory variables and β is a vector of
regression parameters.

I For normal data, the usual link is the identity

g(µ) = µ = xβ.

I For binary data, a common link is the logistic

g(µ) = log

(
µ

1− µ

)
= xβ.

I For Poisson data, a common link is the log

g(µ) = log (µ) = xβ.
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Bayesian Modeling with GLMs

I For a generic GLM, with regression parameters β and a scale
parameter α, the posterior is

p(β, α|y) ∝ p(y |β, α)× p(β, α).

I An immediate question is: How to specify a prior distribution
p(β, α)?

I How to perform the computations required to summarize the
posterior distribution (including the calculation of Bayes factors)?
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Bayesian Computation

Various approaches to computation are available:
I Conjugate analysis — the prior combines with likelihood in such

a way as to provide analytic tractability (at least for some
parameters).

I Analytical Approximations — asymptotic arguments used
(e.g. Laplace).

I Numerical integration.
I Direct (Monte Carlo) sampling from the posterior, as we have

already seen.
I Markov chain Monte Carlo — very complex models can be

implemented, for example with WinBUGS, JAGS or Stan.
I Integrated nested Laplace approximation (INLA). Cleverly

combines analytical approximations and numerical integration:
we illustrate the use of this method in some detail.
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Integrated Nested Laplace Approximation (INLA)

I The homepage of the INLA software is here:
http://www.r-inla.org/home

I There are also lots of example links at this website.
I The fitting of many common models is described here:

http://www.r-inla.org/models/likelihoods
I INLA can fit GLMs, GLMMs and many other useful model

classes.
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INLA for the Linear Model

I The model is

Y = E[Y |xg, xa] = β0 + βgxg + βaxa + βintxgxa + ε

where ε|σ2 ∼iid N(0, σ2).
I This model has five parameters: the four fixed effects are
β0, βg, βa, βint and the error variance is σ2 (note that in inla

inference is reported for the precision σ−2).
I In general, posterior distributions can be summarized graphically

or via numerical summaries.
I In Figures 1 and 2 give posterior marginal distributions for the

fixed effects and hyperparameter σ−2, respectively, under an
analysis with relatively flat priors.
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Comparison of OLS and Bayess

# OLS
o ls . f i t <− lm ( l i n y ˜ l i n x g + l i n x a + l i n x i n t , data= f t o d f )
# MLEs and SEs
cbind ( coef ( o l s . f i t ) , s q r t ( d iag ( vcov ( o l s . f i t ) ) ) )

[ , 1 ] [ , 2 ]
( I n t e r c e p t ) −0.06821632 1.4222970
l i n x g 2.94485495 2.0114316
l i n x a 2.84420729 0.4288387
l i n x i n t 1.72947648 0.6064695
# INLA
formula <− l i n y ˜ l i n x g + l i n x a + l i n x i n t
l i n .mod <− i n l a ( formula , data= f t o d f , f a m i l y =” gaussian ” )
# P o s t e r i o r means and SDs
l i n . mod$summary . f i x e d [ c ( 1 , 2 ) ]

mean sd
( I n t e r c e p t ) −0.06162681 1.4255270
l i n x g 2.93325529 2.0135662
l i n x a 2.84237281 0.4298868
l i n x i n t 1.73261901 0.6073410

Virtually identical!
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Figure 1: Marginal distributions of the intercept and regression coefficients.
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INLA for the Linear Model

I As with a non-Bayesian analysis, model checking is important
and in Figure 3 we present a number of diagnostic plots.

I Plots:
(a) Normality of residuals? Sample size is quite small.
(b) Is the relationship with age linear?
(c) Mean variance relationship?
(d) Overall fit.

I For these data, the model assumptions look reasonable.
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FTO Diagnostic Plots
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Figure 3: Plots to assess model adequacy: (a) Normal QQ plot, (b) residuals
versus age, (c) residuals versus fitted, (d) fitted versus observed.
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Bayes Logistic Regression

I The likelihood is

Y (x)|p(x) ∼ Binomial( N(x),p(x) ), x = 0,1,2.

I Logistic link:

log

(
p(x)

1− p(x)

)
= α + θx

I The prior is
p(α, θ) = p(α)× p(θ)

with
I α ∼ N(µα, σα) and
I θ ∼ N(µθ, σθ). where µα, σα, µθ, σθ are constant that are specified

to reflect prior beliefs.
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Comparison of MLE and Bayess

# MLE
log i tmod <− glm ( cbind ( y , z ) ˜ x , f a m i l y =” b inomia l ” )
# MLEs and SEs
cbind ( coef ( log i tmod ) , s q r t ( d iag ( vcov ( log i tmod ) ) ) )

[ , 1 ] [ , 2 ]
( I n t e r c e p t ) −1.8076928 0.4553938
x 0.4787428 0.2504594
# INLA
cc .mod <− i n l a ( y ˜ x , f a m i l y =” b inomia l ” , data=cc . dat , N t r i a l s =y+z )
# P o s t e r i o r mean and SD
cc . mod$summary . f i x e d [ c ( 1 , 2 ) ]

mean sd
( I n t e r c e p t ) −1.8069628 0.4553857
x 0.4800092 0.2504597

Virtually identical!
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Prior Choice for Positive Parameters

I It is convenient to specify lognormal priors for a positive
parameter, for example exp(β) (the odds ratio) in a logistic
regression analysis.

I One may specify two quantiles of the distribution, and directly
solve for the two parameters of the lognormal.

I Denote by θ ∼ LogNormal(µ, σ) the lognormal distribution for a
generic positive parameter θ with E[log θ] = µ and
var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of
this prior.

I In our example, θ = exp(β).
I Then it is straightforward to show that

µ = log(θ1)

(
zq2

zq2 − zq1

)
−log(θ2)

(
zq1

zq2 − zq1

)
, σ =

log(θ1)− log(θ2)

zq1 − zq2

.

(1)
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Prior Choice for Positive Parameters

I As an example, suppose that
for the odds ratio eβ we
believe there is a 50% chance
that the odds ratio is less than
1 and a 95% chance that it is
less than 5; with

q1 = 0.5, θ1 = 1.0, q2 = 0.95, θ2 = 5.0,

we obtain lognormal
parameters

µ = 0
σ = (log 5)/1.645 = 0.98.

I The density is shown in
Figure 4.
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Figure 4: Lognormal density with 50%
point 1 and 95% point 5.
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Logistic Regression Example

I In the second analysis we
specify

α ∼ N(0,1/0.1)

θ ∼ N(0,W )

where W is such that the
97.5% point of the prior is
log(1.5), i.e. we believe the
odds ratio lies between 2/3
and 3/2 with probability 0.95.

I The marginal distributions are
displayed.
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Figure 5: Posterior marginals for the
intercept α and the log odds ratio θ.
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Comparison of MLE and Bayess

# MLE
log i tmod <− glm ( cbind ( y , z ) ˜ x , f a m i l y =” b inomia l ” )
# MLEs and SEs
cbind ( coef ( log i tmod ) , s q r t ( d iag ( vcov ( log i tmod ) ) ) )

[ , 1 ] [ , 2 ]
( I n t e r c e p t ) −1.8076928 0.4553938
x 0.4787428 0.2504594
# INLA
W <− LogNormalPriorCh (1 ,1 .5 ,0 .5 ,0 .975 ) $sigma ˆ2
cc . mod2 <− i n l a ( y ˜ x , f a m i l y =” b inomia l ” , data=cc . dat , N t r i a l s =y+z ,

c o n t r o l . f i x e d = l i s t (mean . i n t e r c e p t =c ( 0 ) , prec . i n t e r c e p t =c ( . 1 ) ,
mean=c ( 0 ) , prec=c ( 1 /W) ) )

cc . mod2$summary . f i x e d [ c ( 1 , 2 ) ]
mean sd

( I n t e r c e p t ) −1.322757 0.2895597
x 0.198683 0.1535503

Big changes!
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GLMMs
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Smoothing

When faced with estimation n different quantities of the prevalence
under different conditions, there are three model choices:

I The true underlying prevalence risks are ALL THE SAME.
I The true underlying prevalence risks are DISTINCT but not

linked.
I The true underlying prevalence risks are SIMILAR IN SOME

SENSE.

The third option seems plausible when the conditions are related, but
how do we model “similarity”?
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Smoothing

There are a number of possibilities for SMOOTHING models:

I The prevalences are drawn from some COMMON probability
distribution, but are not ordered in any way. We refer this as the
independent and identically distributed, or IID model. We could
think of this as saying we think the prevalences are likely to be of
the same order of magnitude.

I The prevalences are CORRELATED over time.

These are both examples of HIERARCHICAL or RANDOM
EFFECTS MODELS — a key element is estimating the SMOOTHING
PARAMETER.
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Smoothing over Time

Rationale and overview of models for temporal smoothing:
I We often expect that the true underlying prevalence in a study

region will exhibit some degree of smoothness over time.
I A linear trend in time is unlikely to be suitable for more than a

small number of years, and higher degree polynomials can
produce erratic fits.

I Hence, local smoothing is preferred.
I Splines and random walk models have proved successful as

local smoothers.
I And to emphasize again, in either approach, the choice of

smoothing parameter is crucial.
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Random Walk Models
We use random walk models which encourage the mean responses
(e.g., prevalences) across time to not deviate too greatly from their
neighbors.

The true underlying mean of the prevalence at time t is modeled as a
function of its neighbors:

µt | µNE(t) ∼ N(mt , vt ),

where
I µt is the mean prevalence (or some function of it such as the

logit) at time t .
I µNE(t) is the set of neighboring means – with the number of

neighbors chosen depending on the model used – typically 2 or
4.

I mt is the mean of some set of neighbors – for a first order
random walk or RW1 it is simply 1

2 (µt−1 + µt+1).
I vt is the variance, and depends on the number of neighbors – for

the RW1 model it is σ2/2, where σ2 is a smoothing parameter –
small values give large smoothing.
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Random Walk Models

I The smoothing parameter σ2 is estimated from the data, and
determines the extent deviations from the mean are penalized.

I The penalty term for the RW1 model is:

p(µt | µt−1, µt+1, σ
2) ∝ exp

{
− 1

2σ2

[
µt − 1

2 (µt−1 + µt+1)
]2}

.

I Hence:
I Values of µt that are close to 1

2 (µt−1 + µt+1) are favored (higher
density).

I The relative favorability is governed by σ2 – if this variance is small,
then µt can’t stray too far from its neighbors.

I Predictions from the RW1 are

µT+S|µ1, . . . , µT , σ
2 ∼ N(µT , σ

2 × S).
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RW1 Model
I Form of the prior density is:

π(µ|σ2) ∝ exp

(
− 1

2σ2

T−1∑
t=1

(µt+1 − µt )
2

)

= exp

(
− 1

2σ2

∑
t∼t′

(µt − µt′)
2

)
= exp

(
−1

2
µTQµ

)
where t ∼ t ′ indicates t is a neighbor of t ′ and the precision is
Q = R/σ2 with

R =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


and zeroes everywhere else.

I This sparsity leads to big gains in computational efficiency.
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RW2 Model

I The second order RW (RW2) model produces smoother
trajectories than the RW1, and has more reasonable short term
predictions, which is desirable for modeling child prevalence.

I In terms of second differences:

(µt − µt−1)− (µt−1 − µt−2) ∼ N( 0, σ2 ),

showing that deviations from linearity are discouraged.
I Forecasts S steps ahead have a normal distribution with mean:

E[µT+S | µ1, . . . , µT ] = µT + S(µT − µT−1)

which is a linear function of the values at the last two time points.
I The variance is

var(µT+S | µ1, . . . , µT ) =
σ2

6
× S(S + 1)(2S + 1)

which is cubic in the number of periods S, so blows up very
quickly.
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RW2 Model

I Form of the prior density is:

π(µ|σ2) ∝ exp

(
− 1

2σ2

T−2∑
t=1

(µt+2 − 2µt+1 + µt )
2

)

= exp

(
−1

2
µTQµ

)
where the precision is Q = R/σ2 with

R =



1 −2 1
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

· · · · ·
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


and zeroes everywhere else.
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Temporal Smoothing Model Summary

We have three models:

IID MODEL:
µt ∼ N(0, σ2),

smooth towards zero.
RW1 MODEL:

µt − µt−1 ∼ N(0, σ2),

smooth towards the previous value.
RW2 MODEL:

(µt − µt−1)− (µt−1 − µt−2) ∼ N(0, σ2),

smooth towards the previous slope.
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RW Fitting to Simulated Data

I We illustrate fitting with the RW2 model, using the simulated data
seen earlier.

I The model is:

Yt |pt ∼ Binomial(nt ,pt )
pt

1− pt
= exp(α + φt )

(φ1, . . . , φT ) ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter
α ∼ Prior on Intercept
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RW Fitting to Simulated Data

I Fit using R-INLA.

n1 <− 10
p <− 0.2
t ime <− seq (1 ,60)
# Simulate data
y1 <− rbinom ( leng th ( t ime ) , n1 , p )
i n l a d f 1 <− data . frame ( y1=y1 , t ime=t ime )
# Def ine model
formula1s = y1 ˜ f ( t ime , model =” rw2 ” )
f i t 1 s <− i n l a ( formula1s , data= in l ad f 1 ,

f a m i l y =” b inomia l ” , N t r i a l s =n1 ,
c o n t r o l . p r e d i c t o r = l i s t ( compute=TRUE) )

I On Figures 9 and 10 the fitted values are shown in red – in both
the constant prevalence and curved prevalence cases, the
reconstruction is reasonable.
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Figure 9: Prevalence estimates over time from simulated data, true
prevalence p = 0.2 (blue solid lines). Smoothed random walk estimates in
red.
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Figure 10: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line. Smoothed random walk
estimates in red.
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The RNA-Seq Data: INLA Analysis
I Recall there are two replicates and so for each of N genes we

obtain two sets of counts.
I For the diploid hybrid, let Yij be the number of A alleles for gene i

and replicate j , and Nij is the total number of counts, j = 1,2.
I We fit a hierarchical logistic regression model starting with first

stage:
Yij |Nij ,pij ∼ Binomial(Nij ,pij )

so that pij is the probability of seeing an A read for gene i and
replicate j .

I At the second stage:

log
(

pij

1− pij

)
= θi + εij

where εij |σ2 ∼ N(0, σ2) represent random effects that allow for
excess-binomial variation; there are a pair for each gene.

I The θi parameters are taken as fixed effects with relatively flat
priors.

I exp(θi ) is the odds of seeing an A read for gene i .
I Figures 11, 12 and 13 summarize inference.

47 / 95



−2.0 −1.0 0.0 0.5
0.0

0.5
1.0

1.5

PostDens [as.factor(xvar)1]

Mean = −0.832 SD = 0.23

0.5 1.5 2.5 3.5

0.0
0.4

0.8
1.2

PostDens [as.factor(xvar)2]

Mean = 2.022 SD = 0.293

−1.0 0.0 1.0

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)3]

Mean = 0.173 SD = 0.256

−1.0 0.0 0.5 1.0 1.5

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)4]

Mean = 0.43 SD = 0.232

−0.5 0.5 1.0 1.5 2.0

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)5]

Mean = 0.596 SD = 0.23

−0.5 0.5 1.0 1.5 2.0

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)6]

Mean = 0.546 SD = 0.235

0.0 1.0 2.0 3.0

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)7]

Mean = 1.363 SD = 0.283

−1.0 0.0 0.5 1.0

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)8]

Mean = 0.028 SD = 0.231

−1.0 0.0 0.5 1.0

0.0
0.5

1.0
1.5

PostDens [as.factor(xvar)9]

Mean = 0.015 SD = 0.234

Figure 11: Posterior marginals for the first 9 gene effects θi (compare with
zero for evidence of cis effects). We plot 9 rather than all 10 for display
purposes.
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Figure 12: Posterior quantiles for 20 random effects εij , which allow
excess-binomial variation.
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Figure 13: Posterior marginal for precision of random effects σ−2.
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An Informative Summary for the RNA-Seq Data

I We extract the 95% intervals and posterior medians for the log
odds of being an A allele.

I Comparison with 0 (in Figure 14) gives an indication of cis
effects.

I Genes 1, 2, 5, 6, 7 show evidence of cis effects.
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Figure 14: Posterior marginal intervals for posterior of interest θi . Genes with
posterior intervals that do not include zero, show evidence of cis effects.
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Approximate Bayes
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Approximate Bayes Inference

I Particularly in the context of a large number of experiments, a
quick and accurate model is desirable.

I We describe such a model in the context of a GWAS.
I This model is relevant when the sample size in each experiment

is large.
I We first recap the normal-normal Bayes model.
I Subsequently, we describe the approximation and provide an

example.
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Recall: The Normal-Normal Model

The model:
I Prior: θ ∼ N(m, v) and
I Likelihood: Y1, . . . ,Yn|θ ∼ N(θ, σ2).

Posterior p(θ|y1, . . . , yn) is normal with

var(θ|y1, . . . , yn) = [1/v + n/σ2]−1

and

E[θ|y1, . . . , yn] =
m/v + ȳn/σ2

1/v + n/σ2

= m
(

1/v
1/v + n/σ2

)
+ ȳ

(
n/σ2

1/v + n/σ2

)
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A Normal-Normal Approximate Bayes Model

I Consider again the logistic regression model

log
(

pi

1− pi

)
= α + xiθ

with interest focusing on θ.
I We require priors for α, θ, and some numerical/analytical

technique for estimation/Bayes factor calculation.
I Wakefield (2007, 2009) considered replacing the likelihood by

the asymptotic distribution of the MLE, to give posterior:

p(θ|θ̂) ∝ p(θ̂|θ)p(θ)

where
I θ̂|θ ∼ N(θ,V ) – the asymptotic distribution of the MLE,
I θ ∼ N(0,W ) – the prior on the log RR. Can choose W so that 95%

of relative risks lie in some range, e.g. [2/3,1.5].
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Posterior Distribution

I Under this model, the posterior distribution for the log odds ratio
θ is

θ|θ̂ ∼ N(r θ̂, rV )

where
r =

W
V + W

.

I Hence, we have shrinkage to the prior mean of 0.
I The posterior median for the odds ratio is exp(r θ̂) and a 95%

credible interval is
exp(r θ̂ ± 1.96

√
rV ).

I Note that as W →∞ and/or V → 0 (which occurs as we gather
more data) the non-Bayesian point and interval estimates are
recovered (since r → 1).
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A Normal-Normal Approximate Bayes Model

I We are interested in the hypotheses: H0 : θ = 0, H1 : θ 6= 0 and
evaluation of the Bayes factor

BF =
p(θ̂|H0)

p(θ̂|H1)
.

I Using the approximate likelihood and normal prior we obtain:

Approximate Bayes Factor =
1√

1− r
exp

(
−Z 2

2
r
)
,

with Z = θ̂√
V

, r = W
V+W .
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A Normal-Normal Approximate Bayes Model

I The approximation can be combined with a
Prior Odds = π0/(1− π0) to give

Posterior Odds on H0 =
BFDP

1− BFDP
= ABF× Prior Odds

where BFDP is the Bayesian False Discovery Probability.
I BFDP depends on the power, through r .
I For implementation, all that we need from the data is the Z -score

and the standard error
√

V , or a confidence interval.
I Hence, published results that report confidence intervals can be

converted into Bayes factors for interpretation.
I The approximation relies on sample sizes that are not too small,

so the normal distribution of the estimator provides a good
summary of the information in the data.
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Combination of Data Across Studies
I Suppose we wish to combine data from two studies where we

assume a common log odds ratio θ.
I The estimates from the two studies are θ̂1, θ̂2 with standard

errors
√

V 1 and
√

V 2.
I The Bayes factor is

p(θ̂1, θ̂2|H0)

p(θ̂1, θ̂2|H1)
.

I The approximate Bayes factor is

ABF(θ̂1, θ̂2) = ABF(θ̂1)× ABF(θ̂2|θ̂1) (2)

where

ABF(θ̂2|θ̂1) =
p(θ̂2|H0)

p(θ̂2|θ̂1,H1)

and
p(θ̂2|θ̂1,H1) = Eθ|θ̂1

[
p(θ̂2|θ)

]
so that the density is averaged with respect to the posterior for θ.

I Important Point: The Bayes factors are not independent.
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Combination of Data Across Studies

I This leads to an approximate Bayes factor (which summarizes
the data from the two studies) of

ABF(θ̂1, θ̂2) =

√
W

RV1V2
exp

{
−1

2

(
Z 2

1 RV2 + 2Z1Z2R
√

V1V2 + Z 2
2 RV1

)}
where

I R = W/(V1W + V2W + V1V2)

I Z1 = θ̂1√
V1

and

I Z2 = θ̂2√
V2

are the usual Z statistics.

I The ABF will be small (evidence for H1) when the absolute
values of Z1 and Z2 are large and they are of the same sign.

Stephens (2017) extends the ABF approach in an interesting way.
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Combination of Data Across Studies: The General
Case

I Suppose we have K studies with estimates θ̂k and asymptotic
variances Vk , k = 1, ...,K .

I Assume a common underlying parameter θ.
I The Bayes factor is given by

BFK =
p(θ̂1, . . . , θ̂K |H0)

p(θ̂1, . . . , θ̂K |H1)

=

∏K
k=1(2πVk )−1/2 exp

(
− θ̂2

k
2Vk

)
∫ ∏K

k=1(2πVk )−1/2 exp

(
− (θ̂2

k−θ)
2

2Vk

)
(2πW )−1/2 exp

(
− θ2

2Vk

)
dθ

=

√√√√W

(
W−1 +

K∑
k=1

V−1
k

)
exp

−1
2

(
K∑

k=1

θ̂k

Vk

)2(
W−1 +

K∑
k=1

V−1
k

)−1
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Combination of Studies: The General Case

I The posterior is given by

θ|θ̂1, . . . , θ̂K ∼ N(µ, σ2)

where

µ =

(
K∑

k=1

θ̂k

Vk

)(
W−1 +

K∑
k=1

V−1
k

)−1

σ2 =

(
W−1 +

K∑
k=1

V−1
k

)−1
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Example of Combination of Studies in a GWAS

I We illustrate how reported confidence intervals can be converted
to Bayesian summaries.

I Frayling et al. (2007) report a GWAS for Type II diabetes.
I For SNP rs9939609:

Pr(H0|data) with prior:
Stage Estimate (CI) p-value − log10 BF 1/5,000 1/50,000
1st 1.27 (1.16–1.37) 6.4× 10−10 7.28 0.00026 0.0026
2nd 1.15 (1.09–1.23) 4.6× 10−5 2.72 0.905 0.990
Combined – – 13.8 8× 10−11 8× 10−10

I Combined evidence is stronger than each separately since the
point estimates are in agreement.

I For summarizing inference the (5%, 50%, 95%) points for the RR
are:

Prior 1.00 (0.67–1.50)
First Stage 1.26 (1.17–1.36)
Combined 1.21 (1.15–1.27)

64 / 95



Conclusions

I Computationally GLMs and GLMMs can now be fitted in a
relatively straightforward way.

I INLA is very convenient and is being constantly improved.
I As with all analyses, it is crucial to check modeling assumptions

(and there are usually more in a Bayesian analysis).
I Markov chain Monte Carlo provides an alternative for

computation. Stan, WinBUGS and JAGS are possibilities.
I The mixture models required specialized code.
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Appendix: Hierarchical Modeling of
Allele-Specific Expression Data
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Specifics of ASE Experiment

Details of the data:
I Two “individuals” from genetically divergent yeast strains, BY and

RM, are mated to produce a diploid hybrid.
I Three replicate experiments: same individuals, but separate

samples of cells.
I Two technologies: Illumina and ABI SOLiD. Each of a few trillion

cells are processed.
I Pre- and post-processing steps are followed by fragmentation to

give millions of 200–400 base pair long molecules, with short
reads obtained by sequencing.

I Strict criteria to call each read as a match are used, to reduce
read-mapping bias.

I Data from 25,652 SNPs within 4,844 genes.
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Allele Specific Expression via RNA-Seq

Additional data:
I Genomic DNA is sequenced in the diploid hybrid, which has one

copy of each gene from BY and from RM.
I The only difference between the genomic DNA and the main

experiment is that we expect the genomic DNA to always be
present 50:50 (one copy each of BY and RM), whereas for the
main experiment it is only 50:50 if there is no ASE.

I For both genomic DNA and RNA we obtain counts at SNPs, at
each of BY and RM.
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Genomic DNA and RNA

To clarify: we have the RNA measurements which are of primary
interest and the genomic DNA which is like a control.

For genomic DNA, every cell will have one copy of each locus from
“Mom” and one from “Dad” (assuming diploid).

If we could sequence the contents of the cell perfectly, then across a
population of billions/trillions of cells we should see exactly 50% Mom
alleles and 50% Dad alleles.

In reality there will be sampling noise due to differences in things like
amplification efficiency during the sequencing library preparation
process.
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Genomic DNA and RNA

For the RNA, we are measuring transcribed molecules so there might
be x copies of Moms locus and y copies of Dads.

The key is that the same sampling noise present in the DNA data is
also present in the RNA data, because it undergoes the same
sequencing library preparation process.

Actually there is one additional step for RNA which is converting to
cDNA. This may add some noise as well but it is probably less than
the combined effects of the other steps in the process.

So in this sense, using the DNA to model the sampling noise in
molecule counts can serve as a useful baseline for calibrating our
expectations of how much deviation in 50:50 we need to see at the
RNA level before we believe the difference to be interesting.
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Cartoon of the Experiment

Figure 15: Mapping of RNA short reads to BY and RM.
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Statistical Problem

I Aim of the Experiment: Estimate the proportion of genes that
display ASE.

I Let p be the probability of a map to BY at a particular SNP.
I Additionally, we would like to classify genes into:

I Genes that do not show ASE.
I Genes that show:

I Constant ASE across SNPs.
I Variable ASE across SNPs, i.e. p varies within gene.

Subsequently, we will examine genes displaying ASE to
investigate the mechanism.

I A hierarchical model is feasible since we have within gene and
between gene variability.

I Further, a mixture model is suggested, with a mixture of genes
that do not display ASE (so there p’s are 0.5) and that do display
ASE.
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Summaries for ASE Data
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Figure 16: Summaries for RNA BY/RM yeast data; note that 739 SNP
denominators are >500 and are not plotted.
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Figure 17: Schematic of the hierarchical model.
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Approach to Modelling RNASeq Data

Overview, three models fitted:
1. Model 1: Two component mixture model to filter out aberrant

SNPs using genomic DNA data.
2. Model 2: Using the filtered genomic DNA data, fit a hierarchical

SNP within gene model, to determine the “null” distribution of
counts.
Specifically: “wobble” in p about 0.5, and SNP “wobble” in p
within genes.
Absence of ASE is not experimentally equivalent to
Yi ∼ binomial(Ni ,p = 0.5) because of the steps involved in the
experiment.

3. Model 3: For the RNA Seq data develop a two-component
mixture model where each gene either displays no ASE, or ASE,
with null component determined from the analysis of the genomic
DNA data (Model 2).
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Model 1: Filtering Model for Genomic DNA

Two-component mixture model for SNPs:
1. Majority of SNP counts arise from a beta-binomial distribution

with p “close to” 0.5 (component 1).
2. Minority of SNP counts arise from a beta-binomial distribution

with p “not close to” 0.5 due to sequencing bias at these SNPs
(component 2).

I Data: yj and Nj are counts at SNP j for j = 1, . . . ,m SNPs.
I Note: Ignores gene information – don’t want to impose too much

structure at this point.
I SNPs that are more likely to arise from component 2 are then

removed from further analyses.
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Filtering Model for Genomic DNA

I Stage 1: SNP Count Likelihood:

yj |pj ∼ binomial(Nj ,pj ), j = 1, ...,N.

I Stage 2: Between-SNP Prior:

pj |a,b, c, π0 =

{
beta(a,a) with probability π0
beta(b, c) with probability 1− π0

I Stage 3: Hyperpriors: Constrain b < 1, c < 1 to give U-shaped
beta distribution.

a ∼ lognormal(4.3,1.8)?

b ∼ uniform(0,1)

c ∼ uniform(0,1)

π0 ∼ uniform(0,1)

?80% interval for p : [0.43,0.57]. Separate a,b, c, π0 for each
technology.
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Implementation for Genomic DNA

I Integrate pj from model to give:

yj |a,b, c, π0 ∼ π0 × beta-binomial(Nj ,a,a)

+ (1− π0)× beta-binomial(Nj ,b, c).

I This is a mixture of two distributions:
1. The first distribution is for the majority of signals close to 0.5. The

size of a denotes how close is close.
2. The second distribution is for the minority of aberrant SNPs.
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Implementation for Genomic DNA

I Likelihood:

Pr(y |a, b, c, π0) =
N∏

j=1

(
Nj

Yj

) {
π0

Γ(2a)

Γ(a)2

Γ(yj + a)Γ(Nj − yj + a)

Γ(Nj + 2a)

+ (1− π0)
Γ(b + c)

Γ(b)Γ(c)

Γ(yj + b)Γ(Nj − yj + c)

Γ(Nj + b + c)

}
I Posterior:

p(a,b, c, π0|y) ∝ Pr(y |a,b, c, π0)× p(a)p(b)p(c)p(π0).

I Implementation: Markov chain Monte Carlo.
I Recall: Sequencing bias lead to aberrant SNPs, and these errors

are likely to be repeated in the main experiment.
I SNPs falling in the second mixture component were removed from

further analyses.
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Posterior Distributions
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Figure 18: Posteriors for genomic filtering model for Illumina platform.

80 / 95



Posterior Filter
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Figure 19: Posterior probabilities of biased genomic DNA SNPs: 1,295
removed from 25,262.
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Effect of Filtering
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Figure 20: Original and filtered data, for Illumina platform.
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Model 2: Calibration Model for Genomic Data

I With aberrant SNPs removed, the next step is to calibrate the
null component.

I Stage 1: Within-Gene Likelihood:

Yij |pij ∼ binomial(Nij ,pij ).

where pij is the probability of an outcome from the first genetic
background.

I Stage 2: Within-Gene Prior:

pij |αi , βi ∼ beta(αi , βi )

so that αi , βi determine the distribution of variants within gene i .
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Calibration Model for Genomic Data
I αi and βi are not straightforward to interpret.
I We reparameterize (αi , βi )→ (pi ,ei ) with mean and dispersion

parameters (recall αi + βi is a prior sample size):

pi =
αi

αi + βi

ei =
1

1 + αi + βi

I Moments of ASE parameters:

E [pij |pi ,ei ] = pi

var(pij |pi ,ei ) = pi (1− pi )ei

I Moments of data:

E [Yij |pi ,ei ] = Nijpi

var(Yij |pi ,ei ) = Nijpi (1− pi )
[
1 + (Nij − 1)ei

]
I As ei → 0 we approach the binomial model.
I As ei → 1 we have more overdispersion (variability within gene).
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Calibration Model for Genomic data

I Stage 3: Within-Gene Likelihood:

pi |a ∼ beta(a,a)

ei |d ∼ beta(1,d)

Note: prior on within-gene dispersion is monotonic decreasing
from 0 (corresponding to no variability).

I Stage 4: Hyperpriors: Require priors on a > 0,d > 0.
I We take

a ∼ lognormal(4.3,1.8)

d ∼ exponential(0.0001)

I The latter prior determines the within-gene variability within-gene
variability in genomic DNA – chosen by examination of resultant
pij ’s.

I Separate a,d for each technology.
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Figure 21: Posteriors for the RNA-Seq data, Illumina platform.
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Model 3: Model for RNA-Seq Data

I Data are modeled as a two-component mixture: the first “null”
component having a known distribution, from the genomic DNA
analysis on the filtered data.

I Stage 1: Within-Gene Likelihood:

Yij |pij ∼ binomial(Nij ,pij ).

where pij is the probability of an outcome from the first genetic
background.

I Stage 2: Within-Gene Prior:

pij |αi , βi ∼ beta(αi , βi )

so that αi , βi determine the distribution of variants within gene i .
I Stage 3: Between-Gene Prior: We again reparameterize

(αi , βi )→ (pi ,ei ):

pi ,ei |f ,g,h, π0 ∼
{

beta(â, â)× beta(1, d̂) with probability π0
beta(f ,g)× beta(1,h) with probability 1− π0

with â, d̂ from genomic DNA analysis.
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Stage 4: Hyperpriors: Require priors on π0, f > 0,g > 0,h > 0.
I Uniform prior on π0.
I f and g describe beta distribution of pi for genes displaying ASE

– want this distribution to be centered on symmetry.
I Reparameterize as

q =
f

f + g
r =

1
1 + f + g

so that E [pi ] = q, var(pi ) = q(1− q)r .
I Through experimentation:

q ∼ beta(100,100) r ∼ beta(1,20)

I For h, the distribution of within-gene variability in ASE:

h ∼ exponential(0.03).

I Separate f ,g,h for each technology.
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Figure 22: Posteriors for the RNA-Seq data, Illumina platform.
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Figure 23: Comparison of rankings from binomial test and hierarchical model.
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Figure 24: Examples of opposite conclusions: In (b) the p-value said ASE
and Bayes not (large sample size, Bayes allows wobble). In (c) the p-value
said no ASE, Bayes analysis yes.
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Figure 25: Between-gene variability pi and within-gene variability ei .
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Varying ASE within genes

I One mechanism: Imagine a gene with an exon and an intron,
and that we have SNPs in both.

I At each exonic SNP we see approximately the same number of
BY and RM reads.

I Now suppose the intron is not spliced out for the BY allele, but it
is spliced out efficiently for the RM allele. At each intronic SNP
we will still see the same number of BY reads as in the exon
(everything else being equal), but approximately 0 RM reads,
leading to variable ASE across the gene

I In the figure: The “thin” part of the gene (YML024W) is an intron,
while the “thick” part is an exon.

I For the RM allele (magenta) the intron is not spliced out, while it
is mostly spliced out in the BY allele (green).
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Scale
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Figure 26: Example of a gene displaying variable ASE within a gene. Green =
RM, magenta = BY.
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Conclusions for Mixture Model

I For the ASE data we used the DNA experiment to calibrate the
prior.

I More details of this experiment and the model can be found in
Skelly et al. (2011).

I Implementation was via Markov chain Monte Carlo, but we had
to write our own code.

95 / 95


	Introduction and Motivating Examples
	Generalized Linear Models
	Bayes Linear Model
	Bayes Logistic Regression

	Generalized Linear Mixed Models
	Temporal Smoothing
	ASE Example

	Approximate Bayes Inference
	The Approximation

	Appendix: Hierarchical Modeling of Allele-Specific Expression Data
	Motivation
	Modeling


