
2020 SISG Module 8: Bayesian Statistics for
Genetics

Lecture 3: Binomial Sampling 2

Jon Wakefield

Departments of Statistics and Biostatistics
University of Washington

1 / 36



Outline

Prior Specification

Prediction

Bayes Factors

Analysis of ASE Data

Conclusions

2 / 36



This lecture

In this lecture we continue our examination of Bayesian inference for
binomial data and discuss:

I prior specification,
I predictive distributions and
I testing.
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Prior Specification
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Prior Choice and Prior Sensitivity

I For small datasets in particular it is a good idea to examine the
sensitivity of inference to the prior choice, particularly for those
parameters for which there is little information in the data.

I An obvious way to determine the latter is to compare the prior
with the posterior, but experience often aids the process.

I Sometimes one may specify a prior that, in some sense, allows
the data to dominate the posterior.

I In some situations, priors can be found that produce point and
interval estimates that mimic a standard non-Bayesian analysis,
i.e., have good frequentist properties.

I Such priors provide a baseline to compare analyses with more
substantive priors.

I Other names for such priors are objective, reference and
non-subjective.

I We discuss subjective priors that reflect the data analysts belief
about the unknowns.
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Choosing a Prior, Approach One

I Recall that to specify a beta distribution, we need to specify two
quantities, a and b, which are difficult to interpret.

I The posterior mean is

E[θ|y ] =
y + a

N + a + b
.

I Viewing the denominator as a sample size suggests a method for
choosing a and b.

I We may specify the prior mean mprior = a/(a + b) and the “prior
sample size” Nprior = a + b

I We then solve for a and b via

a = Nprior ×mprior

b = Nprior × (1−mprior).

I Intuition: a is like a prior number of successes and b like the prior
number of failures.
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An Example

I Suppose we set Nprior = 5 and mprior = 2
5 .

I It is as if we saw 2 successes out of 5.
I Suppose we obtain data with N = 10 and y

N = 7
10 .

I Hence W = 10/(10 + 5) and

E[θ|y ] =
7

10
× 10

10 + 5
+

2
5
× 5

10 + 5

=
9

15
=

3
5
.

I Solving:

a = Nprior ×mprior = 5× 2
5

= 2

b = Nprior × (1−mprior) = 5× 3
5

= 3

I This gives a Beta(y + a,N − y + b) = Beta(7 + 2,3 + 3) posterior.
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Beta Prior, Likelihood and Posterior
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Figure 1: The prior is Beta(2,3) the likelihood is proportional to a Beta(7,3)
and the posterior is Beta(7+2,3+3).
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Choosing a Prior, Approach Two

I An alternative convenient way of
choosing a and b is by specifying two
quantiles for θ with associated (prior)
probabilities.

I For example, we may wish
Pr(θ < 0.1) = 0.05 and
Pr(θ > 0.6) = 0.05.

I The values of a and b may be found
numerically. For example, we may
solve

[p1 − Pr(θ < q1|a,b)]2

+[p2 − Pr(θ < q2|a,b)]2 = 0

for a,b.
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Figure 2: Beta(2.73,5.67) prior
with 5% and 95% quantiles
highlighted.
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Beware improper priors (and especially improper
posteriors!)

I The beta distribution is proper
(i.e., integrates to 1 over [0,1]), if
a,b > 0.

I If we use a proper beta prior we are
guaranteed a proper posterior.

I If we choose a = b = 0, the prior is

p(θ) ∝ 1
θ(1− θ)

,

which is improper.
I If y = 0 or y = N the posterior is also

improper (one infinite weight
endpoint remains).
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Figure 3: Beta(0,0) improper
prior.

10 / 36



Bayesian Sequential Updating

I We show how probabilistic beliefs are updated as we receive
more data.

I Suppose the data arrives sequentially via two experiments:
1. Experiment 1: (y1,N1).
2. Experiment 2: (y2,N2).

I Prior 1: θ ∼ Beta(a,b).
I Likelihood 1: y1|θ ∼ Binomial(N1, θ).
I Posterior 1: θ|y1 ∼ Beta(a + y1,b + N1 − y1).
I This posterior forms the prior for experiment 2.
I Prior 2: θ ∼ Beta(a?,b?) where a? = a + y1, b? = b + N1 − y1.
I Likelihood 2: y2|θ ∼ Binomial(N2, θ).
I Posterior 2: θ|y1, y2 ∼ Beta(a? + y2,b? + N2 − y2).
I Substituting for a?,b?:

θ|y1, y2 ∼ Beta(a + y1 + y2,b + N1 − y1 + N2 − y2).
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Bayesian Sequential Updating

I Schematically:

(a,b)→ (a + y1,b + N1−y1)→ (a + y1 + y2,b + N1−y1 + N2−y2)

I Suppose we obtain the data in one go as y? = y1 + y2 successes
from N? = N1 + N2 trials.

I The posterior is

θ|y? ∼ Beta(a + y?,b + N? − y?),

which is the same as when we receive in two separate instances.
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Prediction
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Predictive Distribution

I Suppose we see y successes out of N trials, and now wish to
obtain a predictive distribution for a future experiment with M
trials.

I Let Z = 0,1, . . . ,M be the number of successes.
I Predictive distribution:

Pr(z|y) =

∫ 1

0
p(z, θ|y)dθ

=

∫ 1

0
Pr(z|θ, y)p(θ|y)dθ

=

∫ 1

0
Pr(z|θ)︸ ︷︷ ︸
binomial

×p(θ|y)︸ ︷︷ ︸
posterior

dθ

where we move between lines 2 and 3 because z is conditionally
independent of y given θ.
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Predictive Distribution
Continuing with the calculation:

Pr(z|y) =

∫ 1

0
Pr(z|θ)× p(θ|y)dθ

=

∫ 1

0

(
M
z

)
θ

z (1− θ)M−z

×
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)
θ

y+a−1(1− θ)N−y+b−1dθ

=

(
M
z

)
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)

∫ 1

0
θ

y+a+z−1(1− θ)N−y+b+M−z−1dθ

=

(
M
z

)
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)

Γ(a + y + z)Γ(b + N − y + M − z)

Γ(a + b + N + M)

for z = 0,1, . . . ,M.

A likelihood approach would take the predictive distribution as
Binomial(M, θ̂) with θ̂ = y/N: this does not account for estimation
uncertainty.

In general, we have sampling uncertainty (which we can’t get away
from) and estimation uncertainty.
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Predictive Distribution
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Figure 4: Likelihood and Bayesian predictive distribution of seeing
z = 0, 1, . . . ,M = 10 successes, after observing y = 2 out of N = 20
successes (with a = b = 1).

16 / 36



Predictive Distribution: A General Approach

The posterior and sampling distributions won’t usually combine so
conveniently.

In general, we may form a Monte Carlo estimate of the predictive
distribution:

p(z|y) =

∫
p(z|θ)p(θ|y)dθ

= Eθ|y [p(z|θ)]

≈ 1
S

S∑
s=1

p(z|θ(s))

where θ(s) ∼ p(θ|y), s = 1, . . . ,S, is a sample from the posterior.

This provides an estimate of the predictive distribution at the point z.
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Predictive Distribution: A General Approach

I Alternatively, we may sample
from p(z|θ(s)) a large number
of times to reconstruct the
predictive distribution.

I First sample from the
posterior:

θ(s)|y ∼ p(θ|y).

I Next sample from the
likelihood:

z(s)|θ(s) ∼ p(z|θ(s)),

for s = 1, . . . ,S.
I To give a sample z(s) from the

posterior, this is illustrated to
the right.
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Figure 5: Sampling version of
prediction in Figure 4, based on
S = 10, 000 samples.
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Difference in Binomial Proportions

I It is straightforward to extend the methods presented for a single
binomial sample to a pair of samples.

I Suppose we carry out two binomial experiments:

Y1|θ1 ∼ Binomial(N1, θ1) for sample 1
Y2|θ2 ∼ Binomial(N2, θ2) for sample 2

I Interest focuses on θ1 − θ2, and often in examing the possibitlity
that θ1 = θ2.

I With a sampling-based methodology, and independent beta
priors on θ1 and θ2, it is straightforward to examine the posterior
p(θ1 − θ1|y1, y2).
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Difference in Binomial Proportions

I Savage et al. (2008) give data on allele frequencies within a
gene that has been linked with skin cancer.

I It is interest to examine differences in allele frequencies between
populations.

I We examine one SNP and extract data on Northern European
(NE) and United States (US) populations.

I Let θ1 and θ2 be the allele frequencies in the NE and US
population from which the samples were drawn, respectively.

I The allele frequencies were 10.69% and 13.21% with sample
sizes of 650 and 265, in the NE and US samples, respectively.

I We assume independent Beta(1,1) priors on each of θ1 and θ2.
I The posterior probability that θ1 − θ2 is greater than 0 is 0.12

(computed as the proportion of the samples θ(s)
1 − θ

(s)
2 that are

greater than 0), so there is little evidence of a difference in allele
frequencies between the NE and US samples.
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Binomial Two Sample Example
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Figure 6: Histogram representations of p(θ1|y1), p(θ2|y2) and
p(θ1 − θ2|y1, y2). The red line in the right plot is at the reference point of zero.
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Bayes Factors
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Bayes Factors for Hypothesis Testing

I The Bayes factor provides a summary of the evidence for a
particular hypothesis (model) as compared to another.

I The Bayes factor is

BF =
Pr(y |H0)

Pr(y |H1)

and so is simply the probability of the data under H0 divided by
the probability of the data under H1.

I Values of BF > 1 favor H0 while values of BF < 1 favor H1.
I Note the similarity to the likelihood ratio

LR =
Pr(y |H0)

Pr(y |θ̂)

where θ̂ is the MLE under H1.
I If there are no unknown parameters in H0 and H1 (for example,

H0 : θ = 0.5 versus H1 : θ = 0.3), then the Bayes factor is
identical to the likelihood ratio.
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Calibration of Bayes Factors

I Kass and Raftery (1995) suggest intervals of Bayes factors for
reporting:

1/Bayes Factor Evidence Against H0

1 to 3.2 Not worth more than a bare mention
3.2 to 20 Positive
20 to 150 Strong
>150 Very strong

I These provide a guideline, but should not be followed without
question.
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Example: Bayes Factors for Binomial Data

For each gene in the ASE dataset we may be interested in
H0 : θ = 0.5 versus H1 : θ 6= 0.5.

The numerator and denominator of the Bayes factor are:

Pr(y |H0) =

(
N
y

)
0.5y 0.5N−y

Pr(y |H1) =

∫ 1

0

(
N
y

)
θy (1− θ)N−y Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1dθ

=

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a + b)
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Values Taken by the Negative Log Bayes Factor, as a
Function of y
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Figure 7: Negative Log Bayes factor as a function of y |θ ∼ Binomial(20, θ) for
y = 0, 1, . . . , 20 and a = b = 1. High values indicate evidence against the
null.
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Analysis of ASE Data
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Three Approaches to Inference for the ASE Data

1. Posterior Probabilities:
I A simple approach to testing is to calculate the posterior probability

that θ < 0.5.
I We can then pick a threshold for indicating worthy of further study,

e.g. if Pr(θ < 0.5|y) < 0.01 or Pr(θ < 0.5|y) > 0.99

2. Bayes Factors:
I Calculating the Bayes factor.
I Pick a threshold for indicating worthy of further study, e.g. if

reciprocal of the Bayes factor is greater than 150.

3. Decision theory:
I Place priors on the null and alternative hypotheses.
I Calculate the posterior odds:

Pr(H0|y)
Pr(H1|y)

=
Pr(y |H0)

Pr(y |H1)
× Pr(H0)

Pr(H1)

Posterior Odds = Bayes Factor× Prior Odds

I Pick a threshold R, so that if the Posterior Odds < R we choose H1.
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Bayesian Analysis of the ASE Data

I Here we give a
histogram of the
posterior probabilities
Pr(θ < 0.5|y) and we
see large numbers of
genes have
probabilities close to 0
and 1, indicating allele
specific expression
(ASE).
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Figure 8: Histogram of 4,844 posterior
probabilities of θ < 0.5.
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Bayesian Analysis of the ASE Data

I To the left we plot
Pr(θ < 0.5|y) versus
the p-values and the
general pattern is what
we would expect —
small p-values have
posterior probabilities
close to 0 and 1.

I The weird lines are
due to discreteness of
the data.
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Figure 9: Posterior probabilities of θ < 0.5 and
p-values from exact tests.
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Bayesian Analysis of the ASE Data

I Here we plot the -Log
Bayes Factor against
Pr(θ < 0.5|y).

I Large values of the former
correspond to strong
evidence of ASE.

I Again we see an
agreement in inference,
with large values of the
negative log Bayes factor
corresponding with
Pr(θ < 0.5|y) close to 0
and 1.
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Figure 10: Negative Log Bayes factor versus posterior
probabilities of θ < 0.5.
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ASE Example

Applying a Bonferroni correction to control the family wise error rate
at 0.05, gives a p-value threshold of 0.05/4844 = 10−5 and 111
rejections. More on this later!

There were 278 genes with Pr(θ < 0.5|y) < 0.01 and 242 genes with
Pr(θ < 0.5|y) > 0.99.

Following the guideline of requiring very strong evidence, there were
197 genes with the reciprocal Bayes factor greater than 150.

Requiring less stringent evidence, i.e. strong and very strong
(reciprocal BF greater than 20), there were 359 genes.

We later consider a formal decision theory approach to testing.

In this example, the rankings of the different approaches are similar,
but the calibration, i.e., picking a threshold, is not straightforward.
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ASE Output Data

I Below are some summaries from the ASE analysis – we order
with respect to the variable logBFr, which is the reciprocal Bayes
factor (so that high numbers correspond to strong evidence
against the null).

I The postprob variable is the posterior probability of θ < 0.5.

a l l v a l s <− data . frame (Nsum, ysum , pvals , postprob , logBFr )
oBF <− order (− logBFr )
o r d e r a l l v a l s <− a l l v a l s [ oBF , ]
head ( o r d e r a l l v a l s )

Nsum ysum pvals postprob logBFr
4751 437 6 5.340324e−119 1.000000e+00 267.9572
4041 625 97 1.112231e−72 1.000000e+00 161.1355
2370 546 468 8.994944e−69 2.621622e−69 152.2517
2770 256 245 1.127211e−58 2.943484e−59 129.6198
t a i l ( o r d e r a l l v a l s )

Nsum ysum pvals postprob logBFr
824 761 382 0.9422103 0.4567334 −2.086604
2163 776 390 0.9142477 0.4429539 −2.091955
3153 769 384 1.0000000 0.5143722 −2.097079
2860 1076 546 0.6474878 0.3129473 −2.146555
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Summary

I Predictions are very natural under the Bayesian approach.
I Monte Carlo sampling provides flexibility of inference.
I All this lecture considered Binomial sampling, for which there is

only a single parameter. For more parameters, prior specification
and computing becomes more interesting...as we shall see.

I Multiple testing is considered in Lecture 9.
I For estimation and with middle to large sample sizes,

conclusions from Bayesian and non-Bayesian approaches often
coincide.

I For testing it’s more complex, as discussed in Lecture 9.
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Conclusions

Benefits of a Bayesian approach:
I Inference is based on probability and output is very intuitive.
I Framework is flexible, and so complex models can be built.
I Can incorporate prior knowledge!
I If the sample size is large, prior choice is less crucial.

Challenges of a Bayesian analysis:
I Require a likelihood and a prior, and inference is only as good as

the appropriateness of these choices.
I Computation can be daunting, though software is becoming

more user friendly and flexible; later we will describe and
illustrate a number of approaches including INLA and Stan.

I One should be wary of model becoming too complex – we have
the technology to contemplate complicated models, but do the
data support complexity?
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