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Introduction

• In this lecture we will first consider generic Bayesian learning.
• Background reading: Chapters 1 and 2 of Hoff (2009).
• The analysis of allele specific expression data will be used to

motivate a binomial model.
• After introducing the example, we give a brief review of

probability theory.
• Conjugate priors will be introduced.
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Motivating Example: Allele Specific Expression

• Gene expression variation is an important contribution to
phenotypic variation within and between populations.

• Expression variation may be due to genetic or environmental
sources.

• Genetic variation may be due to cis- (local) or trans
(distant)-acting mechanisms.

• Polymorphisms that act in cis affect expression in an allele
specific manner.

• RNA-Seq is a high throughput technology that allows
allele-specific expression (ASE) to be measured.
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Motivating Example: An Example of ASE

• The data we consider is in yeast, and is a controlled experiment
in which two strains, BY and RM, are hybridized.

• Consider a gene with one exon and five SNPs within that exon.
• Suppose the BY allele of the gene is expressed at a high level.
• In contrast, the RM allele has a mutation in a transcription factor

binding site upstream of the gene that greatly reduces
expression of this allele.

• Then, in the mRNA isolated from the yeast, when we look just at
this gene, there are lots more BY mRNA molecules than RM
mRNA molecules.
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Example of ASE
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Figure 1: In the top figure the transcription factor (blue) leads to high
transcription. In the bottom figure an upstream polymorphism (red star)
prevents the transcription factor from binding.
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Specifics of ASE Experiment
Details of the data:
• Two “individuals” from genetically divergent yeast strains, BY and

RM, are mated to produce a diploid hybrid.
• Three replicate experiments: same individuals, but separate

samples of cells.
• Two technologies: Illumina and ABI SOLiD.
• Each of a few trillion cells are processed.
• Pre- and post-processing steps are followed by fragmentation to

give millions of 200–400 base pair long molecules, with short
reads obtained by sequencing.

• Need SNPs since otherwise the reference sequence is identical
and so we cannot tell which strain the read arises from.

• Strict criteria to call each read as a match are used, to reduce
read-mapping bias.

• Data from 25,652 SNPs within 4,844 genes.
• More details in Skelly et al. (2011).
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Simple Approach to Testing for ASE
For a generic gene:
• Let N be the total number of counts at a particular gene, and Y

the number of reads to the BY strain.
• Let θ be the probability of a map to BY.
• A simple approach is to assume:

Y |θ ∼ Binomial(N, θ),

and carry out a test of H0 : θ = 0.5, which corresponds to no
allele specific expression.

• A non-Bayesian approach might use an exact test, i.e.
enumerate the probabiliity, under the null, of all the outcomes
that are equal to or more extreme than that observed.

• Issues:
• p-values are not uniform under the null due to discreteness of Y .
• How to pick a threshold? In general and when there are multiple

tests.
• Do we really want a point null, i.e. θ = 0.5?
• How would a Bayesian perform inference for this problem?
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Figure 2: p-values from 4,844 exact tests.
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Probability and information

We often use “probability” informally to express belief.

If we have strong belief that an event will occur, then we would assign
a high probability to the event.

When probabilities are assigned in everyday life there is an implicit
link with the information that the assigner has available to him/her.

This use can be made mathematically formal via Bayesian theory:
• Probability can numerically quantify rational beliefs
• There is a relationship between probability and information
• Bayes theorem is a rational method for updating uncertainty

based on information
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Bayesian methods

Bayesian methods are data analysis tools that are derived from the
principles of Bayesian inference.

Bayesian methods provide:
• parameter estimates with good statistical properties;
• parsimonious descriptions of observed data;
• predictions for missing data and forecasts of future data;
• a framework for model estimation, selection and validation;
• a means by which prior information can be incorporated.
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Statistical induction

Induction: Reasoning from specific cases to a general principle.

Statistical induction: Using a data sample to infer population
characteristics.

Notation:
Parameter: θ quantifies unknown population characteristics.

Data: y quantifies the outcome of a survey or experiment.

Our goal is to make inference about θ given y .

In the ASE experiment, θ is the probability of a BY allele, and y is the
observed BY count (out of N) .
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Ingredients of a Bayesian analysis

Parameter and sample spaces:
Sample space: Y is the set of all possible datasets.
Parameter space: Θ is the set of all possible θ-values

For the ASE data at one gene:
Sample space: Y = {0,1, . . . ,N} is the set of all possible outcomess.
Parameter space: Θ = [0,1] is the set of all possible values of the

probability θ.
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Ingredients of a Bayesian analysis

Quantifying information:
Prior distribution: p(θ), defined for all θ ∈ Θ, describes our belief that

θ is the true value of the population parameter.
Sampling model: p(y |θ), defined for θ ∈ Θ, y ∈ Y, describes our

belief that y will be the experimental outcome, for each θ.

Updating information:
Bayes theorem: After obtaining data y , the posterior distribution is

p(θ|y)︸ ︷︷ ︸
Posterior

=
p(y |θ)p(θ)

p(y)
∝ p(y |θ)︸ ︷︷ ︸

Likelihood

p(θ)︸︷︷︸
Prior

,

where
p(y) =

∫
Θ

p(y |θ̃)p(θ̃) d θ̃

is the normalizing constant.
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Ingredients of a Bayesian analysis

For the ASE data:
Prior distribution: p(θ) describes our beliefs about the unknown

probability θ of a BY read, before we look at the data.
Sampling model: p(y |θ), describes the probabilities of all of the

possible outcomes y = 0,1, . . . ,N given we (hypothetically)
know the value of the probability θ. When viewed as a function of
θ, p(y |θ) is known as the likelihood.

Posterior distribution: p(θ|y) describes our beliefs about the unknown
probability θ, after we combine the data (via the sampling model)
and the prior.
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Role of prior information

There is a theoretical justification (e.g., Bernardo and Smith 1994)
that tells us that probabilities should express uncertainties and how
beliefs should change after seeing new information (via Bayes
theorem!).

Bayes theorem does not tell us what our beliefs should be.

Adherents of frequentist inference might question the optimality of
Bayesian inference, given the imperfect manner in which beliefs (in
both the sampling model and the prior) are specified.
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ASE Example

A natural choice for the number of BY alleles is:

Y |θ ∼ Binomial(N, θ).

The maximum likelihood estimate (MLE) is

θ̂ =
y
N

= ȳ

with standard error √
θ(1− θ)

N
which is estimated by √

θ̂(1− θ̂)

N
.

Suppose for a particular gene y = 0, then θ̂ = 0 with standard error 0.
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Comparison to non-Bayesian methods in the ASE
setting

Non-Bayesian 95% confidence (Wald) interval:

ȳ ± 1.96
√

ȳ(1− ȳ)/N

If we have y = 0, then the interval is 0± 0, which is clearly
unacceptable.

“Adjusted Wald interval”: Agresti and Coull (1998) discuss the use of:

θ̃ ± 1.96
√
θ̃(1− θ̃)/N , where

θ̃ =
4

N + 4
1
2

+
N

N + 4
ȳ ,

as an approximation to an earlier suggestion of Wilson (1927).

Can be seen as approximately Bayesian, with a beta(2,2) prior for θ
(see later).
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The Big Picture

• Statistics: Probability models for data.
• Data: May be represented as real numbers.
• Probability Theory: Starting with sample spaces and events we

consider a function (the probability) that measures size.
Mathematically, probabilities are measures of uncertainty
obeying certain properties.

• Random Variables: Provide the link between sample spaces and
data.
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Basic Probability Review
Set notation:
• A ∪ B represents union, “A or B”.
• A ∩ B represents intersection, “A and B”.
• ∅ is the empty set.
• A1,A2, . . . , are mutually exclusive (disjoint) events if Ai ∩ Aj = ∅,

for all pairs i , j , i 6= j .
• Ω is the sample space, and F be a suitable collection1 of subsets

of Ω.
• Ac is the complement of A, so that A ∪ Ac = Ω.

Axioms of Probability:
P1 Pr(Ω) = 1,
P2 Pr(A) ≥ 0 for any event A ∈ F ,
P3 Pr (∪∞i=1Ai ) =

∑∞
i=1 Pr(Ai ) for mutually exclusive events

A1,A2, · · · ∈ F .

1Technically, a σ-algebra
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Basic Probability Review

Definition: For events A and B in Ω, with Pr(A) > 0 the conditional
probability that B occurs, given that A occurs, is

Pr(B|A) =
Pr(A ∩ B)

Pr(A)
.

Important point: Pr(·|A) satisfies the axioms of probability, but Pr(B|·)
does not!

In particular, it is always true that: Pr(A|B) + Pr(Ac |B) = 1.

In contrast, in general: Pr(B|A) + Pr(B|Ac) 6= 1.
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Basic Probability Review

Often confused, for example, the prosecutor’s fallacy:

Pr( evidence | guilt ) 6= Pr( guilt | evidence ).

Example: {evidence = white tee-shirt} and we know crime was
committed by someone with a white tee-shirt, so
Pr( evidence | guilt ) = 1 but Pr( guilt | evidence ) < 1.
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Example

P3 with two events: Pr(A1 ∪ A2) = Pr(A1) + Pr(A2) if A1 ∩ A2 = ∅

Example:
• Suppose genotype is {bb,Bb,BB} with probability
{1/4,1/2,1/4}.

• A1 = {genotype is bb}, A2 = {genotype is Bb}
• A1 and A2 are disjoint, and so

Pr(one or more b alleles) = Pr(A1 ∪ A2)

= Pr(A1) + Pr(A2)

= 1/4 + 1/2
= 3/4
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Events and partitions

Definition: A collection of sets {H1, . . . ,HK} is a partition of another
set H if

1. the events are disjoint, which we write as Hi ∩ Hj = ∅ for i 6= j ;
2. the union of the sets is H, which we write as ∪K

k=1Hk = H.
If H is the set of all possible truths (i.e., H = Ω) and {H1, . . . ,HK} is a
partition of H, then exactly one out of {H1, . . . ,HK} contains the truth.

Examples:
• H=someone’s number of children

• {0, 1, 2, 3 or more};
• {0, 1, 2, 3, 4, 5, 6, . . . }.

• H = the relationship between a genotype and heart disease
• {some relationship, no relationship};
• Genotype is: { detrimental, not detrimental}.
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Bayes theorem

For a partition {H1, . . . ,HK}, the axioms of probability imply the
following:

Rule of total probability :
K∑

k=1

Pr(Hk ) = 1

Rule of marginal probability : Pr(E) =
K∑

k=1

Pr(E ∩ Hk )

=
K∑

k=1

Pr(E |Hk ) Pr(Hk )
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Bayes theorem

Bayes theorem : Pr(Hj |E) =

“Likelihood”︷ ︸︸ ︷
Pr(E |Hj )

“Prior”︷ ︸︸ ︷
Pr(Hj )

Pr(E)︸ ︷︷ ︸
Normalizing Constant

=
Pr(E |Hj ) Pr(Hj )∑K

k=1 Pr(E |Hk ) Pr(Hk )

for j = 1, . . . ,K .

Anticipating Bayesian inference:
• One begins with (prior) beliefs about events Hj , Pr(Hj ), and
• updates these to (posterior) beliefs Pr(Hj |E), given that an event

E occurs.
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Bayes theorem: the classic example
Set up:
• 1% of people have a certain genetic defect.
• 90% of tests for the gene detect the defect (true positives).
• 5% of the tests are false positives.

If a person gets a positive test result, what are the odds they actually
have the genetic defect?

First, define events and translate the above:
• A = event of having the defective gene, so that Pr(A) = 0.01. A

and Ac form a partition so the probability of not having the gene
is Pr(Ac) = 0.99.

• Y = event of a positive test result; this can happen in two ways,
via either a true positive (for an A person) or a false positive (for
an Ac person).

From the information above:
• Pr(Y |A) = 0.9 is the chance of a positive test result given that

the person actually has the gene.
• Pr(Y |Ac) = 0.05 is the chance of a positive test if the person

doesn’t have the gene.
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Bayes theorem: the classic example
Bayes theorem allows us to calculate the probability of the gene
defect, given the test results:

Pr(A|Y ) =
Pr(Y |A) Pr(A)

Pr(Y )

First, let’s consider the denominator, the probability of a positive test
result:

Pr(Y ) = Pr(Y |A) Pr(A) + Pr(Y |Ac) Pr(Ac)

= 0.9× 0.01︸ ︷︷ ︸
Positive and defective gene

+ 0.05× 0.99︸ ︷︷ ︸
Positive and non-defective gene

= 0.009 + 0.0495
= 0.0585.

It is clear that the event of a positive test result is dominated by false
positives.
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Bayes theorem: the classic example

The (posterior) probability of interest is:

Pr(A|Y ) =
0.9× 0.01

0.0585
=

0.009
0.0585

= 0.154,

so there is a 15.4% chance that a person with a positive test result
has the defective gene.

At first sight, this low probability may seem surprising but the
posterior to prior odds is

Pr(A|Y )

Pr(A)
=

0.154
0.01

= 15.4,

so that we have changed our beliefs by quite a large amount.
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Bayes theorem
A more accurate representation acknowledges that all probabilities
are also conditional on all current relevant knowledge/information, I.

Bayes theorem : Pr(Hj |E , I) =
Pr(E |Hj , I) Pr(Hj |I)

Pr(E |I)

=
Pr(E |Hj , I) Pr(Hj |I)∑K

k=1 Pr(E |Hk , I) Pr(Hk |I)

Usually the conditioning on I is suppressed for notational ease, but
one should always keep it in mind...

Different individuals, have different information, and so it should be no
surprise that the required elements of Bayes theorem (likelihood and
prior) may differ between individuals.

Note: all of the above is unambiguous, it’s just a bunch of math, but it
doesn’t tell us how to assign prior probabilities or specify sampling
models (likelihoods).
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The meaning of probability

• Mathematically speaking probability is a function that obeys
certain properties and, from this standpoint, one need not worry
too much about the interpretation of probability.

• When it comes to statistical inference, however, we will see that
the interpretation given to probabilities influences the criteria by
which procedures are judged.

• In the frequentist view, probabilities are interpreted as limiting
frequencies observed over (hypothetical) repetitions in identical
situations.

• In the subjective view, probabilities are purely personal. One way
of assigning probabilities is the following.

• The probability of an event E is the price one is just willing to pay to
enter a game in which one can win a unit amount of money if E is
true.

• For example, if I believe a coin is fair and I am to win 1 unit if a
head (the event E) arises, then I would pay 1

2 a unit of money to
enter the bet.
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Monozygotic/dizygotic example

It is known that someone will have twins, e.g., from detection of two
heartbeats.

A sonogram indicates there are twin girls.

What is the probability that the girls are monozygotic (single egg)?

Observed data: Twins are girls.

Prior information: Given twins, approximately one third of twins are
monozygotic (from information in a particular population, remember
the conditioning information, I).
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Monozygotic/dizygotic example
E is event of girl twins, H1 is event of monozygotic, H2 is event of
dizygotic.

Girl twins can be either monozygotic or dizygotic:

Pr(E1) = Pr(E1|H1)︸ ︷︷ ︸
GG or BB

Pr(H1) + Pr(E1|H2)︸ ︷︷ ︸
GG or GB or BB

Pr(H2)

= 1/2× 1/3 + 1/4× 2/3
= 1/6 + 1/6 = 1/3

Updated beliefs:

Pr(H1|E1) =
Pr(E1|H1) Pr(H1)

Pr(E1)

=
Pr(E1|H1) Pr(H1)

Pr(E1|H1) Pr(H1) + Pr(E1|H2) Pr(H2)

=
1/2× 1/3

1/3
= 1/2 > 1/3 = Pr(H1)
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Monozygotic/dizygotic example

Let E2 be the event of knowing twin boys, and E3 the event of
knowing a boy and a girl, H1 is again event of monozygotic.

Observed data (likelihood) calculations:

Pr(E1|H1) =
1
2

Pr(E2|H1) =
1
2

Pr(E3|H1) = 0,

Pr(E1|H2) =
1
4

Pr(E2|H2) =
1
4

Pr(E3|H2) =
1
2
.

Show:

Pr(H1|E2) = 0 (Implications?)

Pr(H1|E3) =
1
2
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Bayesian inference

{H1, . . . ,HK} often refer to disjoint hypotheses or states of nature

E refers to the outcome of a survey, study or experiment (the data).

Post-experimental evaluation of hypotheses are via the posterior
odds ratio:

Pr(Hi |E)

Pr(Hj |E)︸ ︷︷ ︸
“posterior ratio”

=
Pr(E |Hi ) Pr(Hi )/���Pr(E)

Pr(E |Hj ) Pr(Hj )/���Pr(E)

=
Pr(E |Hi ) Pr(Hi )

Pr(E |Hj ) Pr(Hj )

=
Pr(E |Hi )

Pr(E |Hj )
× Pr(Hi )

Pr(Hj )

= “Likelihood ratio”× “prior ratio”

Later we will generalize this idea, when we discuss Bayes factors.
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Twin example

Prior odds:
Pr(H1)

Pr(H2)
=

1/3
2/3

= 1/2

Prior favors H2

Likelihood ratio:
Pr(E1|H1)

Pr(E1|H2)
=

1/2
1/4

= 2

Data is more consistent with H1

Posterior odds:

Pr(H1|E1)

Pr(H2|E1)
=

Pr(H1)

Pr(H2)

Pr(E1|H1)

Pr(E1|H2)
= 1
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Independence

In general:
Pr(F ∩G) = Pr(F ) Pr(G|F ).

F and G are independent if

Pr(F ∩G) = Pr(F ) Pr(G),

i.e.,
Pr(G|F ) = Pr(G),

so that knowledge that F occurred does not alter our beliefs in G
occurring.
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Conditional Independence

Conditional independence is appealed to far more than
independence.

In general,
Pr(F ∩G|H) = Pr(F |H) Pr(G|F ∩ H).

F and G are conditionally independent, given H, if

Pr(F ∩G|H) = Pr(F |H) Pr(G|H).

i.e.,
Pr(G|F ∩ H) = Pr(G|H),

so that, given H, knowledge that F occurred does not alter our beliefs
in G occurring.
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Conditional Independence

Example of use in statistics:

F = { a patient will develop cancer }
G = { the parents’ genotypes }
H = { a patient’s genotype }

Pr(F |H)
?
= Pr(F |G,H)

If we know the patient’s genotype, does knowledge of the parents’
genotype given any additional information?

Genomic imprinting is an epigenetic phenomenon that causes genes
to be expressed in a parent-of-origin-specific manner, i.e., the
expression of the gene depends upon the parent who passed on the
gene.
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Discrete random variables

Let Y be a random variable, an unknown numerical quantity.

Let Y be the set of all possible values of Y .

Y is discrete if the set of possible outcomes is countable, meaning
that Y can be expressed as Y = {y1, y2, . . .}.

Examples
• Y = number of people in a population with a specific allele
• Y = number of children of a randomly sampled person
• Y = number of years of education of a randomly sampled person
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Discrete random variables
For a discrete random variable Y , Pr(Y = y) is the probability that the
outcome Y takes on the value y .

Pr(Y = y) = p(y) is often called the probability mass function or
probability distribution of Y ; requirements:

1. 0 ≤ p(y) ≤ 1 for all y ∈ Y;
2.
∑

y∈Y p(y) = 1.

We can derive various probabilities from p(y):

Pr(Y ∈ A) =
∑
y∈A

p(y)

If A and B are disjoint subsets of Y, then

Pr(Y ∈ A or Y ∈ B) ≡ Pr(Y ∈ A ∪ B) = Pr(Y ∈ A) + Pr(Y ∈ B)

=
∑
y∈A

p(y) +
∑
y∈B

p(y).
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Continuous random variables

If (to a rough approximation) Y = R, then we cannot define Pr(Y ≤ 5)
as equal to

∑
y≤5 p(y) because the sum does not make sense.

Instead, we define a probability density function (pdf) p(y) such that

Pr(Y ∈ A) =

∫
A

p(y) dy

Example:

Pr(Y ≤ 5) =

∫ 5

−∞
p(y) dy .

Requirements of a pdf:
1. 0 ≤ p(y) for all y ∈ Y;
2.
∫
R p(y) dy = 1.
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Continuous random variables

If A and B are disjoint subsets of Y, then

Pr(Y ∈ A or Y ∈ B) ≡ Pr(Y ∈ A ∪ B) = Pr(Y ∈ A) + Pr(Y ∈ B)

=

∫
y∈A

p(y) dy +

∫
y∈B

p(y) dy .



Introduction Bayesian learning Probability and Bayes theorem Standard distributions and conjugacy References

Continuous random variables
Unlike the discrete case,
• p(y) can be larger than 1;
• p(y) is not “the probability that Y = y .”

This is a bit weird, because we use pdfs as models for data. The
rationale is that all “continuous” measurements are actually examples
of discrete random variables (finite number of decimal places).

Suppose we observe Y = y :

Pr(Y = y)
Actually

= Pr(Y ∈ (y − ε, y + ε)) =

∫ y+ε

y−ε
p(y) dy ,

which is a probability.

We approximate these discrete distributions by pdfs.

Regardless, if p(y1) > p(y2) we will sometimes informally say that y1
“has a higher probability” than y2.



Introduction Bayesian learning Probability and Bayes theorem Standard distributions and conjugacy References

The Bernoulli distribution

Let Y = {0,1}.

The outcome Y has a Bernoulli distribution with probability θ if

Pr(Y = y |θ) = p(y |θ) =

{
θ if y = 1
1− θ if y = 0

Alternatively, we can write

Pr(Y = y |θ) = p(y |θ) = θy (1− θ)1−y
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Conditionally independent binary outcomes

Suppose the prevalence of an allele in a population is θ.

Let Y1, . . . ,YN indicate the presence of the allele for N individuals
randomly sampled from the population.

Due to conditional independence:

Pr(Y1 = y1, . . . ,YN = yN |θ) = p(y1, . . . , yN |θ)

= θy1 (1− θ)1−y1 × · · · × θyN (1− θ)1−yN

= θ
∑

yi (1− θ)N−
∑

yi

Note that p(y1, . . . , yN |θ) depends only on
∑N

i=1 yi .

Often, we only record N and the number of events: y =
∑N

i=1 yi .
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The binomial distribution

What is the probability that y people in a sample of size N will have
the allele?

Consider all N-sequences with y 1’s:

Pr(Y1 = 0,Y2 = 1,Y3 = 0, . . . ,YN = 1|θ) = θy (1− θ)N−y

...
...

Pr(Y1 = 1,Y2 = 0,Y3 = 1, . . . ,YN = 0|θ) = θy (1− θ)N−y

There are
(N

y

)
such sequences, so

Pr

(
N∑

i=1

Yi = y |θ

)
=

(
N
y

)
θy (1− θ)N−y .
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The binomial distribution
Let Y = {0,1,2, . . . ,N} for some positive integer N. The outcome
Y ∈ Y has a binomial distribution with probability θ if

Pr(Y = y |θ) = dbinom(y ,N, θ) =

(
N
y

)
θy (1− θ)N−y .

For example, if θ = 0.25 and N = 4, we have 5 possibilities:

Pr(Y = 0|θ = 0.25) =

(
4
0

)
(0.25)0(0.75)4 = 0.316

Pr(Y = 1|θ = 0.25) =

(
4
1

)
(0.25)1(0.75)3 = 0.422

Pr(Y = 2|θ = 0.25) =

(
4
2

)
(0.25)2(0.75)2 = 0.211

Pr(Y = 3|θ = 0.25) =

(
4
3

)
(0.25)3(0.75)1 = 0.047

Pr(Y = 4|θ = 0.25) =

(
4
4

)
(0.25)4(0.75)0 = 0.004 .
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The beta posterior
It can be shown (in detail next lecture!) that if:
• θ ∼ beta(a,b)

• Y |θ ∼ Binomial(N, θ) then the posterior is
θ|y ∼ beta(a + y ,b + N − y)

Posterior mean:

E [θ|y ] =
a + y

a + b + N

=
a

a + b

(
a + b

a + b + N

)
+

y
N

(
N

a + b + N

)
= E[θ]

(
a + b

a + b + N

)
+ ȳ

(
N

a + b + N

)
a weighted combination of the prior mean and the sample mean.

This is an example of a conjugate Bayesian analysis in which the
prior is in the same family as the posterior, unfortunately for most
models such computationally convenient analyses are not possible.



Introduction Bayesian learning Probability and Bayes theorem Standard distributions and conjugacy References

The beta posterior

Recall, from earlier, the adjusted Wald interval:

θ̃ ± 1.96
√
θ̃(1− θ̃)/N , where

θ̃ =
1
2

4
N + 4

+ ȳ
N

N + 4
.

Aside: notice the link with the adjusted Wald interval for the 0
successes case, the estimate is equal to the posterior mean with a
beta(a,b) prior with a = b = 2.
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The Poisson distribution
Let Y = {0,1,2, . . .}. The outcome Y ∈ Y has a Poisson distribution
with mean θ if

Pr(Y = y |θ) = dpois(y , θ) = θy e−θ/y !.

For example, suppose Y is the number of children of a randomly
selected couple; θ = 2.1 (the 2006 U.S. fertility rate),

Pr(Y = 0|θ = 2.1) = (2.1)0e−2.1/(0!) = 0.122
Pr(Y = 1|θ = 2.1) = (2.1)1e−2.1/(1!) = 0.257
Pr(Y = 2|θ = 2.1) = (2.1)2e−2.1/(2!) = 0.271
Pr(Y = 3|θ = 2.1) = (2.1)3e−2.1/(3!) = 0.189
Pr(Y = 4|θ = 2.1) = (2.1)4e−2.1/(4!) = 0.099
Pr(Y = 5|θ = 2.1) = (2.1)5e−2.1/(5!) = 0.042
Pr(Y = 6|θ = 2.1) = (2.1)6e−2.1/(6!) = 0.015

...
...

...

Another example: tumor counts in mice.
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The Poisson likelihood
Let Yi be the number of tumor counts in experiment i , i = 1, . . . ,n.

What is the mean tumor count in this population?

The likelihood: Again assuming conditional independence:

Pr(Y1 = y1, . . . ,Yn = yn|θ) = p(y1, . . . , yn|θ)

=
n∏

i=1

p(yi |θ)

=
n∏

i=1

θyi e−θ/yi !

= θ
∑

yi e−nθ × (
∏

yi !)
−1

Simplification: Let Y =
∑n

i=1 Yi . Then Y |θ ∼ Poisson(nθ) and so

Pr(Y = y |θ) = θy e−nθ × (ny/y !)

The “business end” of the likelihood in both cases is θy e−nθ.
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The gamma posterior distribution

It can be shown that if
• θ ∼ gamma(a,b) (the conjugate prior)
• Y1, . . . ,Yn|θ ∼ Poisson(θ) then the posterior is

θ|y ∼ gamma(a + y ,b + n)

Posterior mean:

E [θ|y ] =
a + y
b + n

=
a
b

(
b

b + n

)
+

y
n

(
n

b + n

)
= E[θ]

(
b

b + n

)
+ ȳ

(
n

b + n

)
,

a weighted combination of the prior mean and the sample mean.
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The Poisson likelihood

Suppose n = 20 mice and y =
∑n

i=1 yi = 324 is the total tumor count
(y/n = 16.2).

Similar populations of mice suggest θ ≈ 10.

A prior distribution for θ which is consistent with this (though we would
need to think about whether the spread of this prior is appropriate):

θ ∼ gamma(10,1)

E[θ] = 10

SD[θ] =
√

10 ≈ 3.16

Example: What is the posterior mean?



Introduction Bayesian learning Probability and Bayes theorem Standard distributions and conjugacy References

The normal distribution

Let Y = (−∞,∞).

The outcome Y ∈ Y has a normal distribution with mean θ and
variance σ2 if

p(y |θ, σ2) = dnorm(y , θ, σ) =
1√
2πσ

exp

{
−1

2

(
y − θ
σ

)2
}
.
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The normal posterior distribution with known variance
σ2

For a sample Y1, . . . ,Yn from a normal distribution, the sampling
model (likelihood) is

Y1, . . . ,Yn|θ ∼ N(θ, σ2).

The MLE is
µ̂ = y ,

and the variance of this estimator is

var(µ̂) =
σ2

n
.

If:
• the prior on the mean is θ ∼ N(µ0, τ

2
0 ) and

• the sampling model (likelihood) is again Y1, . . . ,Yn|θ ∼ N(θ, σ2).

Then, the posterior is also normal:

θ|y1, . . . , yn ∼ N(µn, τ
2
n ).
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The normal posterior distribution
The posterior mean is,

E[θ|y1, . . . , yn] = µn

= µ0(1− w) + ȳw

where the weight on the data is

w =

(
τ2

0

τ2
0 + σ2/n

)
.

So the posterior mean is a weighted combination of the prior mean
and the sample mean.

The posterior variance is,

var(θ|y1, . . . , yn) = τ2
n

= w
σ2

n

≤ σ2

n
= var(µ̂)︸ ︷︷ ︸

Variance of MLE


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The normal posterior distribution
We see that the precisions (inverse variances) are additive:

1/τ2
n︸︷︷︸

Posterior Precision

= 1/τ2
0︸︷︷︸

Prior Precision

+ n/σ2︸ ︷︷ ︸
Data Precision

.

so precision (or information) is additive.

We will consider the normal model for continuous responses for an
area; in a generic area let yk be the weight of sampled person k .

Then a starting model (the likelihood) is

yk = µ+ εk ,

with
εk ∼ N(0, σ2

ε ),

for k = 1, . . . ,n.

A Bayesian analysis would put priors on µ and σ2
ε .
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Simple Normal Example
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Figure 3: Normal likelihood (ȳ=1.5,n=10,σ=1), normal prior (m=1, k=5) and
the resultant normal posterior.
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Describing posterior location
When carrying out frequentist inference for a parameter θ, we may
report the MLE as point estimate; in a Bayes analysis there are a
number of ways of summarizing the posterior with a single number.

The posterior mean expectation of an unknown quantity θ is given by

E[θ|y ] =

∫
θ∈Θ

θp(θ|y) dθ.

The mean is the center of mass of the distribution.

However, it is not in general equal to either of
• the mode: “the most probable value of θ,” or
• the median: “the value of θ in the middle of the distribution.”

For skewed distributions the mean can be far from a “typical” sample
value.

If in doubt, use the posterior median!
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Describing posterior uncertainty

In frequentist inference we might report a confidence interval.

What about expressing uncertainty? Posterior credible intervals!

For example, a 90% interval (θL, θU) can be reported by finding values∫ ∞
θL

p(θ|y) dθ∫ θL

−∞
p(θ|y) dθ

The Bayesian analog of the standard error is the posterior standard
deviation.
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Summary
We have reviewed basic probability theory and began the discussion
of how Bayes theorem can be used for statistical inference.

Probability distributions encapsulate information:
• p(θ) describes prior information
• p(y |θ) describes information about y for each θ
• p(θ|y) describes posterior information

Posterior distributions can be calculated via Bayes theorem

p(θ|y) =
p(y |θ)p(θ)∫

p(y |θ̃)p(θ̃) d θ̃
.

Conjugate analyses are computationally convenient but rarely
available in practice.

Historically, the philosophical standpoint of Bayesian statistics was
emphasized, now pragmatism is taking over.
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