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Introduction

I We will first briefly recap generic Bayesian learning.

I The Bayesian modeling of binomial data will then considered as
an illustration of Bayesian learning.

I Conjugate priors will be introduced – these are of limited practical
use, but will spotlight a number of Bayesian model issues.

I To motivate the binomial model we examine data from an allele
specific expression (ASE) experiment.

I Sampling from the posterior will be discussed as a method for
flexible inference, including a more interesting non-conjugate
prior example.
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Motivating Example: An Example of ASE

I RNA-Seq is a high throughput
technology that allows
allele-specific expression
(ASE) to be measured.

I The ASE data we consider is
in yeast, and was collected in
a controlled experiment in
which two strains, BY and
RM, are hybridized.

I Skelly et al. (2011) report on
data from 25,652 SNPs within
4,844 genes.
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Example of ASE

C

A

BY

RM

Figure 1: In the top figure the transcription factor (blue) leads to high
transcription. In the bottom figure an upstream polymorphism (red star)
prevents the transcription factor from binding.

I Suppose the BY allele of the gene is expressed at a high level.
I In contrast, the RM allele has a mutation in a transcription factor binding

site upstream of the gene that greatly reduces expression of this allele.
I In the mRNA isolated from the yeast, when we look at this gene, there

are lots more BY mRNA molecules than RM mRNA molecules.
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The Data

BY Count Total Count MLE θ̂
62 107 0.58
33 59 0.56

658 1550 0.42
14 61 0.23
57 153 0.37

218 451 0.48
10 19 0.53

...
...

...

Table 1: First few rows of ASE data.

Question of interest:

How close to 0.5 before we conclude no ASE?
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Simple Approach to Testing for ASE

For a generic gene:

I Let N be the total number of counts at a particular gene, and Y
the number of reads to the BY strain.

I Denote by θ be the probability of a map to BY.

I The first thing we need is a sampling model, aka the likelihood.

I A simple approach is to assume:

Y |θ ∼ Binomial(N, θ),

and carry out a test of

H0 : θ = 0.5,

which corresponds to no allele specific expression.
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Simple Approach to Testing for ASE
I A non-Bayesian approach might use an exact test,

i.e., enumerate the probability, under the null, of all the outcomes
that are equal to or more extreme than that observed.

I Issues:
I p-values are not uniform under the null due to discreteness of Y .
I How to pick a threshold? In general, and when there are multiple

tests?
I Do we really want a point null, i.e. θ = 0.5?
I How would a Bayesian perform inference for this problem?
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Figure 2: p-values from 4,844 exact tests.
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Motivating Example: Smoothing/Penalization

I When looking at estimates over space or time, we want to know if
the differences we see are “real”, or simply reflecting sampling
variability.

I In data sparse situations, when one expects similarity smoothing
local patterns (in time, space, or both) this can be highly
beneficial.

I This general approach can equivalently be thought of
penalization, in which large deviations from “neighbors”, suitably
defined, are discouraged.

I We will generically think of modeling prevalence over time.

10 / 58



Motivation for Smoothing: Temporal Case

I Temporal setting: Even if the underlying prevalence is the same
over time, we will see differences in the empirical estimates.

I Figure 3 demonstrates: We sampled binomial data with
n = 10,20,200 and p = 0.2 (shown in blue) in all cases.

I In the top plot in particular, we might conclude large temporal
variation, but all we are seeing is sampling variation.

I Figure 4 summarizes estimates from a second simulation in
which there is a real temporal pattern – here we would not want
to oversmooth and remove the trend.

I Later (Lecture 7) we will apply temporal smoothing models to
these two sets of data.
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Figure 3: Prevalence estimates over time from simulated data with true
prevalence of p = 0.2 (blue solid lines).
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Figure 4: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line.
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Bayesian Learning
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Bayes theorem

For a partition {H1, . . . ,HK}, the axioms of probability imply the
following:

Rule of total probability :
K∑

k=1

Pr(Hk ) = 1

Rule of marginal probability : Pr(A) =
K∑

k=1

Pr(A and Hk )

=
K∑

k=1

Pr(A|Hk ) Pr(Hk )

Simple case: K = 2 with H1 = B and H2 = Bc (the complement of B):

Pr(A) = Pr(A and B) + Pr(A and Bc)

= Pr(A|B) Pr(B) + Pr(A|Bc) Pr(Bc).
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Bayes theorem

Simple Example: Let B = Female and Bc = Male .

Suppose in a given population over the age of 18:

Pr(B) = 0.55, Pr(Bc) = 0.45.

Event of interest: A =being diagnosed with diabetes.

In the US in 2018, for over 18 year olds, Pr(A|B) = 0.095 and
Pr(A|Bc) = 0.11, so

Pr(A) = Pr(A|B) Pr(B) + Pr(A|Bc) Pr(Bc)

= 0.095× 0.55 + 0.11× 0.45
= 0.05225 + 0.0495
= 0.10175

So 10.2% of the population have diabetes.
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Bayes theorem: Flipping around the conditioning

Bayes theorem : Pr(Hj |E) =

“Likelihood”︷ ︸︸ ︷
Pr(E |Hj )

“Prior”︷ ︸︸ ︷
Pr(Hj )

Pr(E)︸ ︷︷ ︸
Normalizing Constant

=
Pr(E |Hj ) Pr(Hj )∑K

k=1 Pr(E |Hk ) Pr(Hk )

for j = 1, . . . ,K .

Anticipating Bayesian inference:
I One begins with (prior) beliefs about events Hj , Pr(Hj ), and
I updates these to (posterior) beliefs Pr(Hj |E), given that an event

E occurs.
Bayes theorem simple case:

Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A)
.
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Bayes theorem

What’s the probability that a person with diabetes is female?

In probability speak:

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)

=
0.095× 0.55

0.10175
= 0.514

So there is a 0.514 chance that a randomly sampled person with
diabetes is female.

This is updated from our prior probability of being female
Pr(B) = 0.55. A slight reduction since males are more likely to have
diabetes.
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Independence and conditional independence

Conditional independence is a key concept when constructing
statistical models – we start by describing independence.

For events A and B, it is always true that,

Pr( A and B ) = Pr( A |B )× Pr( B ).

Bayes theorem:

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)
.

Viewed in a Bayesian way, knowledge that A occurs has updated our
beliefs about B.
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Independence and conditional independence

How about when we don’t learn anything from B’s occurrence?

Then
Pr( B |A ) = Pr( B )

or equivalently

Pr( A and B ) = Pr( A )× Pr( B ).

I The events A and B are said to be independent.
I Knowledge that A occurs does not affect our beliefs about B.
I Knowledge that B occurs does not affect our beliefs about A, i.e.,

this implies Pr(A|B) = Pr(A).

If diabetes risk was the same in females and males, then knowing
diabetes status, A, would not tell us anything about the sex of the
person, B, i.e., Pr(B|A) = Pr(B).
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Conditional Independence

In statistical modeling, independence is rarely relevant, but
conditional independence is ubiquitous.

Extending this idea, events F and G are conditionally independent
given H, if

Pr( F and G |H ) = Pr( F |H )× Pr( G |H ),

Or written another way:

Pr( F |G,H ) = Pr( F |H ).

Given H, knowledge that G occurred does not alter our beliefs in F
occurring.
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Conditional Independence: Example

Suppose we have the following
events:

F = { a patient develops cancer }
G = { patient’s parent’s genotype }
H = { patient’s genotype }

Informal statement:

If we know the patient’s
genotype H, does
knowledge of the parents’
genotype G give any
additional information?

Formal statement:

Does

Pr( F |H ) = Pr( F |G,H )?

Answer: In general, condtional independence will hold, but not on al
occasions; in genomic imprinting genes are expressed in a
parent-of-origin-specific manner, i.e., the expression of the gene
depends upon the parent who passed on the gene.
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Bayes Theorem for Inference

I Unknown parameter θ, observed data y .
I We derive the posterior distribution via Bayes theorem:

p(θ|y) =
Pr(y |θ)× p(θ)

Pr(y)
. (1)

I The denominator:

Pr(y) =

∫
Pr(y |θ)× p(θ)dθ = E[Pr(y |θ)]

is a normalizing constant to ensure the RHS of (1) integrates to 1
(we assume a continuous parameter θ).

I More colloquially:

Posterior ∝ Likelihood × Prior
= Pr(y |θ)× p(θ)

since in considering the posterior we only need to worry about
terms that depend on the parameter θ.
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Conditional Independence in Statistics

I Independence is rarely justified when constructing a sampling
model – think about Bernoulli outcomes.

I Conditional independence assumption require more care in time
series and spatial scenarios (in particular).

I Conditional independence is a key concept when building
hierarchical models, as we will see – in this case prior
distributions are fashioned using conditional independence.
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Conditional Independence in Statistics

I Markov random field models in particular are constructed from
conditional independence assumptions (Rue and Held, 2005).

I Conditional independencies can be expressed through graphical
models.

Figure 5: Example of a graphical model for binomial data, from Lunn
et al. (2013).
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Conditional Independence in Statistics

In likelihood-based inference, conditional independence is used all
the time.

For example, the sampling model for data y = [y1, . . . , yn]T is often
taken to be:

p(y |θ) = p(y1, . . . , yn|θ)

= p(y1|θ)× p(y2|y1,θ)× · · · p(yn|yn−1, . . . , y1,θ)

= p(y1|θ)× p(y2|θ)× · · ·p(yn|θ)

=
n∏

i=1

p(yi |θ)

where we have assumed conditional independence, i.e., given θ, the
observations are independent.

Example: For coin tosses, the outcomes are conditionally
independent, given the probability of a head θ.
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Overview of Bayesian Inference

To carry out inference, integration is required, and a large fraction of
the Bayesian research literature focusses on this aspect.

Bayesian approaches to:

1. Estimation: marginal posterior distributions on parameters of
interest.

2. Prediction: via the predictive distribution.

3. Hypothesis Testing: Bayes factors give the evidence in the data
with respect to two or more hypotheses, and provide one
approach.

These three endeavors will now be described in the context of a
binomial model – in general we focus on estimation and prediction.
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Bayesian Analysis of Binomial Data
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Elements of Bayes Theorem for a Binomial Model

Suppose the data consist of N Bernoulli (0/1) responses yi ,
i = 1, . . . ,N.

We may assume these responses are conditionally independent,
given a common “success” probability θ.

Under this conditional independence assumption, the distribution of
the total y =

∑N
i=1 yi is binomial:

Pr(Y = y |θ) =

(
N
y

)
θy (1− θ)N−y (2)

and tells us the probability of seeing Y = y , for the permissible values

y = 0,1, . . . ,N

given the probability θ.
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Figure 6: Binomial distributions for two values of θ with N = 10.
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Elements of Bayes Theorem for a Binomial Model

For fixed y , we may view (2) as a function of θ – this is the likelihood
function:

L(θ) = θy (1− θ)N−y .

The maximum likelihood estimate (MLE) is the average number of
successes:

θ̂ =
y
N

= y ,

and gives the highest probability to the observed data, i.e. maximizes
the likelihood function.

The standard error of this estimate is√
θ̂(1− θ̂)/N.
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Figure 7: Binomial likelihoods for values of y = 5 (left) and y = 10 (right),
with N = 10. The MLEs are indicated in red.
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Bayes and frequentist estimates for binomial

If y = 0 (y = N), we have estimate θ̂ = 0 (=1) and a standard error of
0, which is clearly problematic.

“Adjusted Wald interval”: Agresti and Coull (1998) discuss the use of
the alternative estimator:

θ̃ =
4

N + 4
1
2

+
N

N + 4
y ,

to give the interval:

θ̃ ± 1.96
√
θ̃(1− θ̃)/N

as an approximation to an earlier suggestion of Wilson (1927).
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The Beta Distribution as a Prior Choice for Binomial θ

Bayes Theorem:
p(θ|y) ∝ p(y |θ)× p(θ).

I Bayes theorem requires the likelihood, which we have already
specified as binomial, and the prior.

I For a probability 0 < θ < 1 an obvious candidate prior is the
uniform distribution on (0,1): but this is too restrictive for general
use.

I The beta distribution, Beta(a,b), is more flexible and so may be
used for θ, with a and b specified in advance, i.e., a priori. The
uniform distribution is a special case with a = b = 1.

I The form of the beta distribution is

p(θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

for 0 < θ < 1, where Γ(·) is the gamma function1.
1Γ(z) =

∫∞
0 tz−1e−t dt
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The Beta Distribution as a Prior Choice for Binomial θ

I The Beta(a,b) distribution is valid2 for a > 0,b > 0.
I How can we think about specifying a and b?
I For the normal distribution the parameters µ and σ2 are just the

mean and variance, but for the beta distribution a and b have no
such simple interpretation.

I The mean and variance are:

E[θ] =
a

a + b

var(θ) =
E[θ](1− E[θ])

a + b + 1
.

Hence, increasing a and b concentrates the distribution about
the mean.

I The quantiles, e.g. the median or the 10% and 90% points, are
not available as a simple formula, but are easily obtained within
software – in R we use the function qbeta(p,a,b).

2A distribution is valid if it is non-negative and integrates to 1
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Figure 8: Beta distributions, Beta(a, b), the red lines indicate the means.
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Samples to Summarize Beta Distributions

I In general, there is a duality between probability distributions and
samples from distributions: given a probability distribution we can
generate a sample, and given a sample, we can construct the
probability distribution from which they arose — this is key to the
direct sampling and Markov chain Monte Carlo (MCMC)
Bayesian implementation methods.

I Probability distributions can be investigated by generating
samples from them, and then examining histograms, moments
and quantiles.

I In Figure 9 we show histograms of beta distributions for different
choices of a and b.
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Figure 9: Random samples from beta distributions; sample means in red. 38 / 58



Samples for Describing Weird Parameters

I So far the samples we have
generated have produced
summaries we can easily
obtain anyway.

I But what about functions of
the probability θ, such as the
odds θ/(1− θ)?

I Once we have samples for θ
we can simply transform the
samples to the functions of
interest.

I We may have clearer prior
opinions about the odds, than
the probability.
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Figure 10: Samples from the prior on
the odds θ/(1− θ) with
θ ∼ Beta(10, 10), the red line
indicates the sample mean.
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Issues with Uniform Priors
We might think that if we have little prior opinion about a parameter
then we can simply assign a uniform prior, i.e. a prior

p(θ) ∝ const.

There are two problems with this strategy:
1. We can’t be uniform on all scales since, if φ = g(θ):

pφ(φ)︸ ︷︷ ︸
Prior for φ

= pθ(g−1(φ))︸ ︷︷ ︸
Prior for θ

×
∣∣∣∣ dθdφ

∣∣∣∣︸ ︷︷ ︸
Jacobian

and so if g(·) is a nonlinear function, the Jacobian will be a
function of φ and hence not uniform.

2. If the parameter is not on a finite range, an improper distribution
will result (that is, the form will not integrate to 1). This can lead
to an improper posterior distribution, and without a proper
posterior we can’t do inference.
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Are Priors Really Uniform?

I We illustrate the first (non-uniform on
all scales) point.

I In the binomial example a uniform
prior for θ seems a natural choice.

I But suppose we are going to model
on the logistic scale so that

φ = log

(
θ

1− θ

)
is a quantity of interest.

I A uniform prior on θ produces the
very non-uniform distribution on φ in
the figure.

I Not being uniform on all scales is not
necessarily a problem, and is correct
probabilistically, but one should be
aware of this characteristic.
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Figure 11: Samples from the
prior on the odds
φ = log[θ/(1− θ)] with
θ ∼ Beta(1, 1), the red line
indicates the sample mean.
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Posterior Derivation: The Quick Way

I When we want to identify a particular probability distribution we
only need to concentrate on terms that involve the random
variable.

I For example, if the random variable is X and we see a density of
the form

p(x) ∝ exp(c1x2 + c2x),

for constants c1 and c2, then we know that the random variable X
must have a normal distribution.
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Posterior Derivation: The Quick Way

I For the binomial-beta model we concentrate on terms that only
involve θ.

I The posterior is

p(θ|y) ∝ Pr(y |θ)× p(θ)

∝ θy (1− θ)N−y × θa−1(1− θ)b−1

= θy+a−1(1− θ)N−y+b−1

I We recognize this as the important part of a

Beta(y + a,N − y + b)

distribution.
I We know what the normalizing constant must be, because we

have a function which must integrate to 1.
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The beta posterior

The above is an example of a conjugate Bayesian analysis in which
the prior is in the same family as the posterior, unfortunately for most
models such computationally convenient analyses are not possible.

Recall, from earlier, the adjusted Wald interval:

θ̃ ± 1.96
√
θ̃(1− θ̃)/N , where

θ̃ =
1
2

4
N + 4

+ y
N

N + 4
.

Notice the link with the adjusted Wald interval for the 0 successes
case, the estimate is equal to the posterior mean with a Beta(a,b)
prior with a = b = 2.

44 / 58



Posterior Summaries

I We will rarely want to report a point estimate alone, whether it be
a posterior mean or posterior median.

I Interval estimates are obtained in the obvious way.

I A simple way of performing testing of particular parameter values
of interest is via examination of interval estimates.

I For example, does a 95% interval contain the value θ0 = 0.5?
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Other Posterior Summaries

I In our beta-binomial example, a 90% posterior credible interval
(θL, θU) results from the points

0.05 =

∫ θL

0
p(θ|y) dθ

0.95 =

∫ θU

0
p(θ|y) dθ

I The quantiles of a beta are not available in closed form, but easy
to evaluate in R:
y <− 7; N <− 10; a <− b <− 1
qbeta ( c ( 0 . 0 5 , 0 . 5 , 0 . 9 5 ) , y+a ,N−y+b )
[ 1 ] 0.4356258 0.6761955 0.8649245

I The posterior median is 0.68 and a 90% credible interval is
[0.44,0.86].

I The MLE is 0.70 and an asymptotic 90% confidence interval is
0.70± 1.645×

√
0.7× 0.3/10 = [0.46,0.94].
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Bayes and frequentist estimates for binomial

Example: N = 10, y = 0 gives

θ̃ =
4

10 + 4
1
2

+
10

10 + 4
y =

4
28

= 0.14

with adjusted standard error

√
θ̃(1− θ̃)/10 =

√
4
28

(
1− 24

28

)
/10 = 0.11

Under the Bayesian interpretation Bayesian procedure, with a
Beta(2,2) prior for θ:

> y <− 0;N <− 10;a <− b <− 2; apost <− a+y ; bpost <− b+(N−y )
> qbeta ( p=c (0 .025 ,0 .975) , apost , bpost )
[ 1 ] 0.01920667 0.36029744

So Bayes 95% interval is (0.019,0.36).
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A More Interesting Example
Suppose a seroprevalence test is carried out with sensitivity

δ = Pr( +ve test | disease )

and specificity,
γ = Pr( -ve test | no disease ).

Let π be the true prevalence.

We test n people and y are recorded as having the disease, and a
starting model is

y |p ∼ Binomial(N,p)

where p is the probability of a +ve test result. with

p = Pr( +ve test )

= Pr( +ve test | disease ) Pr( disease )

+ Pr( +ve test | no disease ) Pr( no disease )

= δπ + (1− γ)(1− π)

= π(δ + γ − 1) + (1− γ)

Suppose for simplicity the sensitivity and specificity are known and
we want to estimate π. 48 / 58



A More Interesting Example

With this binomial model the MLE is (exercise!):

π̂ =
y − N(1− γ)

N(δ + γ − 1)

A Bayesian model is

y |π ∼ Binomial(N, π(δ + γ − 1) + (1− γ))

π ∼ Beta(a,b)

Not conjugate!

However, a simple rejection algorithm (Smith and Gelfand, 1992) can
be implemented that simulates samples from the posterior p(π|y).
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Direct Sampling
We briefly describe the rejection algorithm that can be used to
generate samples from the posterior.

Let θ denote the unknown parameters and assume that we can
evaluate the maximized likelihood

M = sup
θ

p(y | θ) = p(y | θ̂)

where θ̂ is the MLE. The algorithm then proceeds as follows:
1. Generate U ∼ U(0,1) and, independently, θ ∼ π(θ).
2. Accept θ if

U <
p(y | θ)

M
,

otherwise return to 1.
The probability that a point is accepted is given by

pa =

∫
p(y | θ)π(θ)dθ

M
=

p(y)

M
.
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COVID-19 Prevalence Estimate

I In early April, 2020, Bendavid
et al. (2020) recruited 3330
residents of Santa Clara
County, California and tested
them for COVID-19
antibodies. 50 people tested
positive, yielding a raw
estimate of 1.50%.

I We take the sensitivity as 0.8
and the specificity as 0.995
and the prior parameters as
a = b = 1.

I See Gelman and Carpenter
(2020) for a more
comprehensive Bayesian
analysis.
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Figure 12: Histogram representation of
the posterior distribution for the
prevalence π. The posterior median is
1.28% and a 90% interval is
(0.88%,1.77%).
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Summary

Conjugate analyses are computationally convenient but rarely
available in practice.

Historically, the philosophical standpoint of Bayesian statistics was
emphasized, now pragmatism is taking over.
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Summary

Benefits of a Bayesian approach:

I Inference is based on probability and output is very intuitive.

I Framework is flexible, and so complex models can be built.

I Can incorporate prior knowledge!

I If the sample size is large, prior choice is less crucial (so long as
the likelihood is not dicey).
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Summary

Challenges of a Bayesian analysis:

I Require a likelihood and a prior, and inference is only as good as
the appropriateness of these choices.

I Computation can be daunting, though software is becoming
more user-friendly and flexible; later we will describe and
illustrate a number of approaches including INLA and Stan.

I One should be wary of models becoming too elaborate – we
have the technology to contemplate complicated models, but do
the data support complexity?
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Posterior Derivation: The Long (Unnecessary) Way

I The posterior can also be calculated by keeping in all the
normalizing constants:

p(θ|y) =
Pr(y |θ)× p(θ)

Pr(y)

=
1

Pr(y)

(
N
y

)
θy (1− θ)N−y Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1. (3)

I The normalizing constant is

Pr(y) =

∫ 1

0
Pr(y |θ)× p(θ)dθ

=

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0
θy+a−1(1− θ)N−y+b−1dθ

=

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a + b)

I The integrand on line 2 is a Beta(y + a,N − y + b) distribution,
up to a normalizing constant, and so we know what this constant
has to be.
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Posterior Derivation: The Long (and Unnecessary)
Way

I The normalizing constant is therefore:

Pr(y) =

(
N
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(N − y + b)

Γ(N + a + b)

I This is a probability distribution, i.e.
∑N

y=0 Pr(y) = 1 with
Pr(y) > 0, for y = 0,1, . . . ,N.

I For a particular y value, this expression tells us the probability of
that value given the model, i.e. the likelihood and prior we have
selected: this will reappear later in the context of hypothesis
testing.

I Substitution of Pr(y) into (3) and canceling the terms that appear
in the numerator and denominator gives the posterior:

p(θ|y) =
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)
θy+a−1(1− θ)N−y+b−1

which is a Beta(y + a,N − y + b).
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The Posterior Mean: A Summary of the Posterior
I Recall the mean of a Beta(a,b) is a/(a + b).
I The posterior mean of a Beta(y + a,N − y + b) is therefore

E[θ|y ] =
y + a

N + a + b

=
y

N + a + b
+

a
N + a + b

=
y
N
× N

N + a + b
+

a
a + b

× a + b
N + a + b

= MLE×W + Prior Mean× (1-W).

I The weight W is

W =
N

N + a + b
.

I As N increases, the weight tends to 1, so that the posterior mean
gets closer and closer to the MLE.

I Notice that the uniform prior a = b = 1 gives a posterior mean of

E[θ|y ] =
y + 1
N + 2

.
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