
2022 SISG Module 13: Bayesian Statistics for
Genetics

Lecture 9: Bayes and Frequentist Testing

Jon Wakefield

Departments of Statistics and Biostatistics
University of Washington

1 / 80



Outline

Review of p-Values and Bayes Factors

Multiple Testing

Conclusions

Appendix
Bayes Bonferroni
Bayes Mixture Model

2 / 80



Review of p-Values and Bayes Factors

3 / 80



The Statistical Set-Up

We review frequentist and Bayesian test procedures.

I We begin with a very simple situation in which we have a single
parameter of interest θ.

I Assume the null of interest is

H0 : θ = 0

with θ, for example, a treatment difference, or a log odds ratio, or
a log hazard ratio.

I We assume an analysis yields a statistic T for which large values
indicate departures from the null – asymptotically χ2

1.

I For example, the squared Wald statistic, T = θ̂ 2/V , with V the
asymptotic variance of the MLE1.

I An alternative is the likelihood ratio statistic.

1T=Z 2 where Z is the Z -score
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Types of Testing

I The observed p-value is,

p = Pr(T > tobs|H0)

where tobs is a number that is evaluated for the data at hand.
I The p-value is not saying anything about the probability of the

null being true!!
I To report p only, gives a pure significance test.
I A small p-value can arise because:

I H0 is true but we were “unlucky”.
I H0 is not true.

– to decide which explanation is responsible depends crucially
on the prior belief on whether H0 is true or not.

Key question: How small is small?
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Types of Testing

I A test of significance sets a cut-off value (e.g. α = 0.05) and
rejects H0 if p < α.

Again: How to pick α?
I A type I error is to reject H0 when it is true, and a test of

significance controls the type I error (whereas a pure significance
test does not).

I A type II error occurs when H1 is true but H0 is not rejected.
I A hypothesis test goes one step further and specifies an

alternative hypothesis.
I A decision is then taken as to which of H0 and H1 is chosen.
I The celebrated Neyman-Pearson lemma shows that for fixed
α-level the likelihood ratio statistic maximizes the power.

I Wouldn’t it be more reasonable to balance type I and type II
errors?
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The Dangers of Fixed Significance Levels

I Example: Sample, Y1, . . . ,Yn of size n from N(θ,1),

H0 : θ = 0, H1 : θ = 1.

Obvious that we should reject H0 for Y n > k(n), a constant2.
I The table below illustrates the problems of choosing a fixed α,

regardless of sample size — imbalance in α and β as a function
of n:

n α β k(n)
1 0.01 0.91 2.33
25 0.01 0.0038 0.46

100 0.01 8× 10−15 0.23

I Also: Statistical versus practical significance.
I For both p-values and α levels we need thresholds that decrease

as a function of the sample size n. Pearson (1953, p. 68), “...the
quite legitimate device of reducing α as n increases”.

2Note that the threshold for T = [Y n/(1/
√

n)]2 is constant
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A quite remarkable result!
I With π0 = Pr(H0), Sellke et al. (2001) show that:

Pr(H0| data ) ≥
{

1− 1
2.72 p log p

× 1− π0

π0

}−1

(1)

I A small p-value doesn’t translate to a small probability that the
null is not true.
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Why does anyone use p-values?

I Historically, it was usual to carry out well-powered (single)
experiments, and the prior on the alternative was not small.

I With respect to (1) and with π0 = 0.5:

I p-value = 0.05 gives Pr(H0| data ) > 0.29.

I p-value = 0.01 gives Pr(H0| data ) > 0.11.

I Scientists well-calibrated in their own discipline?

I Perhaps, but if you’re going to be subjective, why not be formal
about it?

I Aside: Reason for lack of replication in observational
epidemiology? Along with confounding, data dredging,
measurement error,...
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Calibrating α-Levels

I We want Pr(H0| data ), where “data” corresponds to the event
T > tfix, but to obtain this we must specify alternatives – consider
a simple alternative, say H1 : θ = θ1.

I Then,

Posterior Odds of H0 =
Pr(H0| data )

Pr(H1| data )

=
Pr(T > tfix|H0)

Pr(T > tfix|H1)
× Pr(H0)

Pr(H1)

=
α

1− β
× Prior Odds of H0

I For ranking associations (which does not involve the prior odds if
constant across tests): must consider the power, Pr( data |H1).

I For calibration: must consider the prior odds of H0.
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A Sanity Check via a Simple Example

I The model:
Yi |θ ∼iid N(θ, σ2), σ2 known,

i = 1, . . . ,n.
I The distribution of the MLE is:

θ̂ = Y ∼ N(θ,V )

with V = σ2/n,

T =
nY

2

σ2 .

I Null and alternative hypotheses are

H0 : θ = 0, H1 : θ 6= 0.
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A Sanity Check via a Simple Example

I Under H1 assume the prior θ ∼ N(0,W ).

I Recall from previous lectures that the evidence in the data for a
pair of hypotheses is summarized in the Bayes factor:

BF =
p(y |H0)

p(y |H1)
=

∏n
i=1 N(yi |0, σ2)∫

θ

∏n
i=1 N(yi |θ, σ2)× N(θ|0,W )dθ

.
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Testing: decision theory

A reminder of the ingredients for decision theory;

I Loss function L(θ,d): how bad it would be if the truth were θ but
you took decision d . (Optimists: note we could equivalently
define utility as −L(θ,d) — how good it would be – economists
do this)

I Expected posterior loss E[ L(θ,d) ] – loss for some decision d
averaged over posterior uncertainty

The Bayes rule is the decision d that minimizes E[ L(θ,d) ] – but for
testing, d is 0 or 1, so this means checking whether

E[ L(θ,d = 0) ] ≤ E[ L(θ,d = 1) ],

i.e., do we expect less loss deciding d = 0 or d = 1?
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Testing

Truth
θ = 0 θ 6= 0

Decision d = 0 0 L1
d = 1 L2 0

With respect to this table, the posterior expected cost associated with
the decision d is

E[L(θ,d)] = L(θ = 0,d) Pr(θ = 0|y) + L(θ 6= 0,d) Pr(θ 6= 0|y).

The two possible decisions (report θ = 0 or θ 6= 0) the expected
losses are:

E[L(θ,d = 0)] = 0× Pr(θ = 0|y) + L2 Pr(θ 6= 0|y)

E[L(θ,d = 1)] = L1 Pr(θ = 0|y) + 0× Pr(θ 6= 0|y)
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Testing

We now have to find the decision that minimizes the posterior
expected loss, as a function of Pr(θ 6= 0|y) = Pr(θ|y).

A little rearrangement leads to reporting θ 6= 0 if

Pr(θ 6= 0|y) ≥ L1

L1 + L2
=

1
1 + L2/L1

=
1

1 + R
,

or equivalently

Pr(θ = 0|y) <
1

1 + R
.

Examples:

If L1 = L2 (R = 1), report θ 6= 0 if Pr(θ 6= 0|y) ≥ 1
2 .

If L1 = 3× L2 (R = 1/3), report θ 6= 0 if Pr(θ 6= 0|y) ≥ 3
4 .

If L2 = 3× L1 (R = 3), report θ 6= 0 if Pr(θ 6= 0|y) ≥ 1
4 .
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A Sanity Check via a Simple Example

I We take W = σ2, which corresponds to the “unit information
prior” of Kass and Wasserman (1995) (this choice not so
important).

I With a prior odds, PO, and ratio of costs of type II to type I errors,
R, this gives the decision rule to reject H0:

Posterior Odds = BF× PO

=
√

1 + n × exp

(
−T

2
n

1 + n

)
× PO < R

I Notice how this depends on T and n.
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A Bayesian Test Statistics Threshold

I Rearrangement gives a threshold for rejection of:

T >
2(1 + n)

n
log

(
PO
R

√
1 + n

)
I For relatively large prior odds on the null PO: require T to be

larger (more evidence).
I For relatively large cost of Type II errors R (so that we are averse

to type II error, i.e. missing signals): require T to be smaller (less
evidence).

I Not such a simply summarization for n but, beyond a certain
point, as n gets larger, we require larger T (more evidence).

I The above should be contrasted with the usual frequentist
approach of

T > const

with the constant usually chosen to control the type I error.
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A Bayesian Test Statistic Threshold

I The table below evaluates the probability of rejection given H0.
We assume R = 1.

I For π0 = 0.5 and n = 20,50,100 the thresholds give ≈ 0.05
— the situation in which this infamous threshold was first
derived?

π0 = 0.25 π0 = 0.50 π0 = 0.95
n = 10 0.64 0.10 0.0025
n = 20 0.35 0.074 0.0022
n = 50 0.18 0.045 0.0016

n = 100 0.12 0.031 0.0011
n = 1000 0.030 0.0085 0.00034
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Calibration with p-values

I The ABF can be inverted to
give a rule for Z 2 that
depends on PO, R and n (as
with the simple example
presented previously).

I For more details, see
Wakefield (2009).

I Figure 1 shows the behavior
of this rule as a function of the
sample size n, and for
different choices of the prior
on the alternative π1 and the
ratio of costs of type II to type
I errors.

I The curves have the expected
ordering and, as n gets large,
a greater and greater level of
evidence is required.
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Figure 1: Regression threshold, on
log10(p)-value scale, vs sample size.

This is as we would expect because as the sample size increases we
want both Type I and Type II errors to go to zero.
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Summary for Single Tests

I p-values are widely misinterpreted but are not going away and so
it’s important to interpret correctly.

I p-values are hard to calibrate without knowing the sample
size/power.

I Thresholds for significance should increase (i.e., p-values should
be smaller) as n increases.

I Bayes factors provide an alternative (and they produce
thresholds with desirable properties), but they are not without
their issues (prior specification, calibration,...).

I To get at Pr(H0| data ) you can’t get away from specifying
π0 = Pr(H0), and the posterior probability is horribly sensitive to
the value chosen.

I Better to use estimation procedures if you can.
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Multiple Testing
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Motivation for Multiple Testing

We have covered testing procedures, both frequentist and Bayesian,
in the context of single tests.

How to proceed, when multiple tests are envisaged, is a big topic:

A lot of interest lately, given the advent of technologies that allow
huge numbers of experiments to be performed.

As with single tests, this topic is controversial.
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Motivating Example

I We follow a running example with data from a microarray study
of 102 men, 52 with prostate cancer and 50 normal controls
(Efron and Hastie, 2016).

I Gene expression levels were measured for m = 6033 genes.

I A two-standard t-test was carried out.
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Motivating Example

I A transformation was made
so that the resultant statistic
zi , has distribution under the
null:

H0i : zi ∼ N(0,1),

for i = 1, . . . ,m genes.
I Under the alternative:

H1i : zi ∼ N(µi ,1),

for i = 1, . . . ,m genes.
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Figure 2: Histogram of z-values for
prostate microarray study, with N(0, 1)
distribution in red.

I The aim is to find genes with
non-zero µi .
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Framework for Multiple Testing

Possibilities with m tests and when K are flagged as requiring further
attention:

Non-Flagged Flagged
H0 A B m0
H1 C D m1

m − K K m

I m0 is the number of true nulls.
I B is the number of type I errors.
I C is the number of type II errors.

Problem: To select a rule that will determine K .

We discriminate between:
I A sensible criterion.
I How the criterion should depend on sample size.
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The Family-Wise Error Rate

Non-Flagged Flagged
H0 A B m0
H1 C D m1

m − K K m

I The family-wise error rate (FWER) is the probability of making at
least one Type I error, i.e.

Pr(B ≥ 1| all H0 true ).

I Let Bi be the event that the i-th null is incorrectly rejected, so that
B = ∪m

i=1Bi is the total number of incorrectly rejected nulls.
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The Family-Wise Error Rate

I The FWER is given by:

FWER = Pr(B ≥ 1| all H0 true ) = Pr (∪m
i=1Bi | all H0 true )

≤
m∑

i=1

Pr(Bi | all H0 true )

= mα?

where α? is the level for each test.
I This is true regardless of whether the tests are independent or

not.
I Bonferroni takes α? = α/m to give FWER ≤ α.
I Example: For control at α = 0.05 with m = 6033 tests take
α? = 0.05/6033 = 8.3× 10−6.

I Such stringent rules lead to a loss of power, but not ridiculous if
you think there is a reasonable chance that all nulls could be true
(but α should depend on n, in particular should decrease as n
gets larger and larger).
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Sidak Correction

I If tests are independent:

Pr(B ≥ 1) = 1− Pr(B = 0)

= 1− Pr(∩m
i=1B′i )

= 1−
m∏

i=1

Pr(B′i )

= 1− (1− α?)m = FWER

I So to achieve FWER = α take p-value threshold as
α? = 1− (1− α)1/m — the Sidak correction (Sidák, 1967).

I Example: with m = 6033 tests take

α? = 1− (1− 0.05)1/6033 = 8.5× 10−6,

which is very close to the Bonferroni threshold.
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Holm’s Procedure

Holm’s procedure Holm (1979) offers a modest improvement over
Bonferroni.

Let
p(1) ≤ p(2) ≤ · · · ≤ p(i) ≤ · · · ≤ p(m),

with corresponding null hypotheses H0i .

Then, proceed as follows:
1. Let i0 be the smallest index i such that

p(i) >
α

m − i + 1
.

2. Reject all null hypotheses N0(i) for i < i0 and accept all with i ≥ i0.

It can shown that Holm’s procedure controls FWER at level α and is
slightly less conservative than Bonferroni.
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Expected Number of False Discoveries

We describe an alternative criterion.

For i = 1, . . . ,m tests let Bi again be the 1/0 random variable
representing whether the null was incorrectly rejected or not, so that
B = ∪m

i=1Bi .

The expected number of false discoveries (EFD), with significance
level α for each test, is given by

EFD = E[B] =
m∑

i=1

E[Bi ] = mα

if all nulls are true.
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Expected False Discoveries

For m0 true nulls: E[B] = m0α, but m0 is unknown, so all we can say
is

EFD = E[B] ≤ mα.

I In a GWAS context suppose m = 6033 and α = 0.05; this gives
EFD ≤ 302, so conventional levels not so useful.

I We can easily put an upper bound on the EFD.
I For example, if we set α = 1/m the expected number of false

discoveries is bounded by 1.
I With α = 5/m the expected number of false discoveries is

bounded by 5.
I Compare to Bonferroni which controls the FWER via α/m.
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Prostate Cancer Example

I We begin by
plotting,the observed
p-values versus those
expected under the
null, i.e. i/(m + 1) for
i = 1, . . . ,m = 6033.

I Hard to tell what is
going on here... even
when we focus in on
bottom left, which is
the small p-value area
of region of interest.
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Prostate Cancer Example

I We stretch the scale in Figure 5
by taking − log10, the area where
the action is, is now top right.

I On this scale, a value of 2
corresponds to a p-value of 0.01,
and a value of 3 corresponds to a
p-value of 0.001.

I Bonferroni,
p = 0.05/m = 8.3× 10−6, or
− log10(p) = 5.1, flags only 3
genes as worthy of attention –
this is the consequence of such a
conservative criteria of following
a procedure in which the
probability of making any type I
errors is 0.05.

I Holm’s procedure gives the same
3.
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Figure 3: Observed versus expected
p-values, on − log10 scale.
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Prostate Cancer Example

I The EFD=1 gives a p-value
threshold of 1/6033 = 0.00017,
or − log10(p) = 3.78 and gives 21
flagged genes – with an expected
false discovery of 1.

I The EFD=5 gives a p-value
threshold of 5/6033 = 0.00083,
or − log10(p) = 3.08 and gives 54
flagged genes.

I As always with frequentist
procedures there is no way of
knowing anything about the 21
(or 54) specifically, the EFD=1 or
5 is the average over repeated
uses of this procedure.
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False Discovery Rate
A very popular criterion is the false discovery rate (FDR).

Non-Flagged Flagged
H0 A B m0
H1 C D m1

m − K K m

Define the false discovery proportion (FDP) as the proportion of
incorrect rejections:

FDP =

{
B
K if K > 0
0 if K = 0

Then the false discovery rate (FDR), the expected proportion of
rejected nulls that are actually true nulls, is given by

FDR = E[FDP].

This is the usual frequentist thing – under hypothetical replication of
the experiment and application of the procedure the proportion of
flagged features which are actually null.
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False Discovery Rate

We describe an algorithm for controlling the FDR.

Consider the following procedure for independent p-values:
1. Let P(1) < · · · < P(m) denote the ordered p-values.
2. Define li = iα/m and R = max{i : P(i) < li} where α is the value

for which we would like FDR control.
3. Then define the p-value threshold as PT = P(R).
4. Reject all H0i for which Pi ≤ PT .

Benjamini and Hochberg (1995) show that if this procedure is applied,
then regardless of how many nulls are true (m0) and regardless of the
distribution of the p-values when the null is false

FDR ≤ m0

m
α < α.

This is incredible!
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False Discovery Rate

If all the signals are null, then B = K (all rejections are false) and

FDR = E
[

B
K

]
= 1× Pr(B ≥ 1) = FWER.

FDR in this form and with extensions, e.g. Storey and Tibshirani
(2003) has been successfully used in the microarrays field, where the
number of non-null associations is not small.

Unfortunately less successful in a GWAS, because the proportion of
nulls is very close to 1.
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Prostate Cancer Example

I With a 5% FDR, 21 signals are
flagged (not shown on figure).

I With a 10% FDR, 59 signals are
flagged.

I Again, we cannot say anything
about specific signals but under
repeated use of this procedure
we are using 10% of the signals
we flag as significant, will actually
be null.

I We definitely can’t say that for
any of the signals we have
flagged there is a 10% chance
that the null is true.

I With a 20% FDR, 106 signals are
flagged (not shown on figure).
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q-values

The algorithm of Benjamini and Hochberg (1995) begins with a
desired FDR and then provides the p-value threshold.

Storey (2002) proposed an alternative method by which, for any fixed
rejection region, a criteria closely related to FDR, the positive false
discovery rate

pFDR = E[B/K | K > 0],

may be estimated3.

We assume rejection regions of the form T > tfix and consider the
pFDR associated with regions of this form, which we write as
pFDR(tfix).

3this handles the event K = 0 differently to the previously-defined FDR
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q-values

We define, for i = 1, . . . ,m tests, the random variables Hi = 0/1
corresponding to null/alternative hypotheses and test statistics Ti .

Then, with π0 = Pr(H = 0) and π1 = 1− π0 independently for all tests:

pFDR(tfix) =
Pr(T > tfix | H = 0)× π0

Pr(T > tfix | H = 0)× π0 + Pr(T > tfix | H = 1)× π1
.

Consideration of the false discovery odds:

pFDR(tfix)

1− pFDR(tfix)
=

Pr(T > tfix | H = 0)

Pr(T > tfix | H = 1)
× π0

π1

explicitly shows the weighted trade-off of type I and type II errors, with
weights determined by the prior on the null/alternative.
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q-values

Storey (2003) rigorously shows that,

pFDR(tfix) = Pr(H = 0 | T > tfix),

giving a Bayesian interpretation.

In terms of p-values, the rejection region corresponding to T > tfix is
of the form [0, γ].

Let P be the random p-value resulting from a test.

Under the null, P ∼ U(0,1), and so

pFDR(γ) =
Pr(P ≤ γ | H = 0)× π0

Pr(P ≤ γ)

=
γ × π0

Pr(P ≤ γ)
. (2)

From this expression, the crucial role of π0 is evident.
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q-values

I Storey (2002) estimates (2), using
uniformity of p-values under the null,
to produce the estimates

π̂0 =
#{pi > λ}
m(1− λ)

(3)

P̂r(P ≤ γ) =
#{pi ≤ γ}

m
(4)

with λ chosen via the bootstrap to
minimize the mean-squared error for
prediction of the pFDR.

I The expression (3) calculates the
empirical proportion of p-values to
the right of λ, and then inflates this to
account for the proportion of null
p-values in [0, λ].

Figure 6: Histogram of
p-values for prostate cancer
example.

I π0 is estimated as
0.854 for the prostate
cancer data.

I 71 genes flagged at
10% FDR level.
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q-values

This method highlights the benefits of allowing the totality of p-values
to estimate fundamental quantities of interest such as π0.

The q-value is the minimum FDR that can be attained when a
particular test is called significant.

We give a derivation of the q-value, following Storey (2002).

To make the argument simpler, suppose we have a test statistic T
that is χ2

1 under the null.

Then define a set of nested rejection regions {Γ} where these sets
could be of the form

Γ = [t ,∞)

where −∞ ≤ t ≤ ∞.
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q-values
Then,

p-value(t) = inf{Γ:t∈Γ} Pr(T ∈ Γ | H = 0)

is the p-value corresponding to an observed statistic t .

For example, p-values of 0.05 and 0.10 correspond to Γ = [3.84,∞)
and Γ = [2.71,∞), respectively.

The q-value is defined as

q-value(t) = inf{Γ:t∈Γ} Pr(H = 0 | T ∈ Γ) (5)

Therefore, for each observed statistic ti there is an associated
q-value.

The q-value is the minimum pFDR that can be attained when calling
that feature significant.

For example, if a particular feature has a q-value of 0.17, then if we
call this feature significant, the expected proportion of false positives
incurred is 17%.
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q-values

I Recall,

pFDR(γ) =
γ × π0

Pr(P ≤ γ)
.

I As we have noted, a common mistake is to say that the p-value
is the probability a feature is a false positive, i.e., to equate with
Pr(H0| data ).

I We stress that the q-value is also not the probability that the
feature is a false positive.

I The q-values can be estimated from the p-values via,

q̂(p) = inf
γ≥p

pFDR(γ).

I The interpretation of the q-value is the minimum FDR that can be
attained when calling that feature significant.
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q-values

I The order of the
q-values is the same
as the order of the
p-values (as with
Bonferroni and EFD).

I 71 genes are flagged
with a 10% FDR using
the q-value approach,
recall that the
Benjamini-Hochberg
algorithm gave 59
genes at this level.
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q-values and ”Local” FDR

It can be shown that,

Pr(H0 | T > tobs) < Pr(H0 | T = tobs) (6)

I So the evidence for H0
given the exact
ordinate is always
greater than that
corresponding to the
tail area.

I This fits in with the
Sellke et al. (2001)
result we saw earlier,
see Figure 7.
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Figure 7: Sellke et al. (2001) relationship
between posterior probability of the null and
the p-value.
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q-values

When one decides upon a value of FDR (or pFDR) to use in practice,
the sample size should again be taken into account, since for large
sample size one would not want to tolerate as large an FDR as with a
small sample size.

Again, we would prefer a procedure that was consistent.

However, as in the single test situation, there is no prescription for
deciding how FDR should decrease with increasing sample size.
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Prostate cancer: q-values

Figure 8: q-value plots for prostate cancer data.
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Bayesian False Discoveries/Non-Discoveries

I In a Bayesian approach, based on Bayes factors we have a rule
to flag a single association as noteworthy if:

Posterior Odds = Bayes Factor× Prior Odds
< R

where R is the ratio of costs of type II to type I errors.
I In a multiple testing situation in which m associations are being

examined nothing, in principle, changes.
I We simply apply the same rule m times, perhaps changing the

priors if we have different priors for different associations.
I The choice of threshold, R, and hence the procedure, does not

depend on: the number of tests being carried out4.

4unless the prior on the null, or the ratio of costs of errors depends on the number of
tests
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Bayesian False Discoveries/Non-Discoveries

I As we have seen, the Bayes factor depends, crucially, on the
sample size.

I In contrast, multiple testing based on p-values
(e.g. Bonferroni/Sidak) does not depend on the sample size but,
crucially, on the number of tests m.

I We have already noted that p-value calibration is very difficult,
and we would like a procedure by which p-value thresholds
decrease to zero with increasing sample size.

I The same would also be required of EFD or FDR based
procedures.
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Bayesian False Discoveries/Non-Discoveries

To summarize in the case of normal test statistics:

The Bayesian decision is based on the Z score and on the
sample size, n, but not on the number of tests, m.

In contrast:

The Bonferroni decision is based on the Z score and on
the number of tests, m, but not on the sample size, n.
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Bayesian Multiple Testing

In a Bayesian context, for a single test:

I If we call a hypothesis noteworthy then Pr(H0| data ) is the
probability of a false discovery.

I If we call a hypothesis not rejected then Pr(H1| data ) is the
probability of a false non-discovery.

Key Point: A Bayesian analysis of a single SNP alone, or the same
SNP from multiple SNPs will produce the same decision (assuming
the prior is the same).
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Bayesian False Discoveries/Non-Discoveries

In a multiple-hypothesis testing situation (and assuming ordered so
the first K are rejected), we have

Expected number of false discoveries =
K∑

i=1

Pr(H0i | datai )

Proportion of false discoveries =
1
K

K∑
i=1

Pr(H0i | datai )

Expected number of false non-discoveries =
m∑

i=K +1

Pr(H1i | datai )

Proportion of false non-discoveries =
1

m − K

m∑
i=K +1

Pr(H1i | datai ).
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Bayesian Multiple Testing

I In the frequentist approaches, the expected FDR is with respect
to infinite hypothetical identical situations; the above Bayesian
approach we have posterior summaries so they are conditional
on the data (and are also dependent on the model).

I Another important difference is that the Benjamini Hochberg
FDR was defined with respect to a tail-area, whereas these
Bayesian measures condition on Y = y .
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Local FDR Estimation

The local FDR corresponding to a test statistic z0 is defined as

FDR(z0) = Pr(gene i is null|zi = z0).

Note: The local bit just refers to conditioning on a particular value,
rather than a tail area.

We have
FDR(z) =

π0f0(z)

f (z)
.

In practice f (z) is replaced by f̂ (z).
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Empirical Bayes method

I Efron’s local FDR (Efron et al., 2001) uses a two-groups model to
estimates the proportion of null/signal genes as a function of Zi .

null
interesting

fdr=80% fdr=50% fdr=2%

Figure 9: Local FDR.

I Estimating the ‘null’ component from the middle of the data,
subtracting it from an overall density estimate, we can estimate
local FDR, denoted FDR(Z ).
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Prostate cancer example
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Figure 10: Local FDR for prostate cancer data. Blue dashed curve is
distribution if all null. The green solid line is the spline-based estimate of the
mixture density f . Pink are non-null signals. π̂0 = 0.932.

We find 25 genes with F̂DR(Zi ) < 0.1.

58 / 80



Local false sign rates

Stephens (2017) has recently proposed an approach building on
previous ideas and with a number of benefits:

I Assumes effect sizes are drawn from a unimodal distribution
which allows more accurare inference (lower variance), provided
the assumption holds, and convenient computation.

I The method requires two inputs for each feature, estimate and
uncertainty, in contrast to p- and q-values, so accounts for the
power of the test/experiment.

I It provides an estimate of the effect size, along with uncertainty
(i.e., the posterior distribution).

Empirical Bayes (EB) is used for estimation, as its computationally
simpler – this adaptive shrinkage method is referred to as ash.
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Local false sign rates: Specific details

The approach takes as input an estimate β̂i and standard error si for
the i-th signal and then (also) builds a hierarchical mixture model.

The posterior for β is

p(βi |β̂i , si ) ∝ p(β̂i |βi , si )× p(βi ),

and the prior for β is assumed to be independent from a unimodal pdf
with

p(βi ) = π0δ0(βi ) +
K∑

k=1

πk N(βi |0, σ2
k ),

where δ0(·) is a point mass at 0, and the mixing proportions πk are to
be estimated, as are the mixture variances σ2

k .
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Local false sign rates: Specific details

I Estimation would focus on the posterior distribution p(βi |β̂,s, π̂).
I To gauge significance of observation i , we can examine the local

FDR (Efron, 2008):

LFDRi = Pr(βi = 0|β̂,s, π̂)

This is the probability of being incorrect if we were to declare
significance when actually null.

I This measures reflects the classic focus on whether an effect is
exactly zero, and Stephens (2017) prefers the local false sign
rate (LFSR).

I The LFSR is the probability that we would make an error in the
sign if we were forced to declare it either positive or negative, a
Type S error.

I Formally,

LFSRi = min
[
Pr(βi ≥ 0|β̂,s, π̂),Pr(βi ≤ 0| β̂,s, π̂)

]
.
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Local false sign rates

Example: Suppose that

Pr(βi < 0|π̂, β̂,s) = 0.95

Pr(βi = 0|π̂, β̂,s) = 0.03

Pr(βi > 0|π̂, β̂,s) = 0.02

Then, LFSRi = min(0.05,0.98) = 0.05.

This LFSR corresponds to the fact that, given these results, we would
guess that βi is negative, with probability 0.05 of being wrong.

The LFDRi is 0.03 in this example.
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Local false sign rates

Small values of LFDRi indicate we can be confident that βi 6= 0, while
small values of LFSRi indicate we can be confident in the sign of βi .

We have LFSRi ≥ LFDRi , which makes sense, since being confident
in the sign of an effect implies we are confident it is non-zero.

In this sense, LFSR is a more conservative measure of significance
than LFDR.
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Local false sign rates

Average error rates can be obtained: Let S ∈ {1, . . . ,m} denote a
subset of the observations. Then the average FSR can be estimated
as,

F̂SR(S) =
1
|S|
∑
i∈S

LFSRi .

This is an estimate of the total proportion of errors we made if we
were to estimate the sign of all effects in S.

The s-value is defined as

si = F̂SR({k : LFSRk ≤ LFSRi})

is an analogous measure to the q-value.
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LFSR: Prostate data

For the prostate cancer data, π̂0 = 0.84.

head ( o u t $ r e s u l t [ , 1 : 5 ] , 5 )
betahat sebetahat NegativeProb Pos i t i veProb l f s r

1 0.394234285 0.2656347 0.029291126 0.15911902 0.8408810
2 0.703227359 0.1900733 0.001392831 0.90157430 0.0984257
3 −0.006046081 0.2173035 0.056465210 0.05461837 0.9435348
4 −0.239860003 0.2106722 0.122247036 0.02933164 0.8777530
5 −0.033913878 0.2412444 0.063317423 0.05393860 0.9366826

head ( o u t $ r e s u l t [ , 6 : 1 0 ] , 5 )
svalue l f d r qvalue PosteriorMean Poster iorSD

1 0.67579181 0.81158985 0.65031517 0.0350449209 0.10830331
2 0.04354673 0.09703287 0.04299731 0.4186750962 0.20706512
3 0.86172602 0.88891642 0.80947053 −0.0003780271 0.05434714
4 0.74093749 0.84842132 0.71902507 −0.0211092735 0.08025763
5 0.85043901 0.88274398 0.79390938 −0.0020380021 0.05940802

65 / 80



LFSR: Illustration of shrinkage
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Figure 11: Posterior mean versus summary point estimates.
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LFSR: comparison with LFDR
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Figure 12: LFSR versus LFDR.
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Conclusions
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Conclusions

I Bayesian analysis is attractive in a multiple testing context, but
the results are very sensitive to the prior on the proportion of
nulls, π0.

I Fast methods are required for large m (e.g. in a GWAS context)
of tests, which is still a drawback for many Bayesian approaches.

I Such priors can have a major impact on rankings and posterior
probabilities.

I Stephens and Efron estimate the distribution of the alternative
component of the Z statistics, while Storey estimates the
alternative component of the p-value distribution.
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Summary

What to do with multiple comparisons is a difficult problem:

I Apart from doing nothing, the only truly ‘default’ method is
Bonferroni, which may not be the best approach, since it is so
conservative.

I If we use estimation (for example, via a hierarchical model) we
can avoid multiple comparison problems (though care in the
model specification needed).

I There are many summaries of techniques, see for example Efron
and Hastie (2016).

I Stephens (2017) is a very good discussion of modern
techniques.
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Bayes Bonferroni

There is a prior that results in a Bayesian Bonferroni-type correction5.

If the prior probabilities of each of the nulls are independent with
π0i = π0 for i = 1, . . . ,m.

Then the prior probability that all nulls are true is

Π0 = Pr(H1 = 0, . . . ,Hm = 0) = πm
0

which we refer to as prior P1, and let αi,B be the posterior probability
of the null under this prior for gene i .

Example if π0 = 0.5 and m = 10, Π0 = 0.00098, which may not reflect
the required prior belief.

5The following describes a very idealized setting where the data model and prior are
both normal
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Bayes Bonferroni

Suppose instead that we wish to fix the prior probability that all of the
nulls are true at Π0.

A simple way of achieving this is to take π0i = Π
1/m
0 , a specification

we call prior P2.

Westfall et al. (1995) show that for independent tests

α?i,B = Pr(Hi = 0 | y i ,P2)

≈ m × Pr(Hi = 0 | y i ,P1)

= m × αi,B.

So a Bayesian version of a Bonferroni-like result is recovered.

As we have seen before, the posterior probability on the null, is
strongly dependent on the prior on the null.
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Multiple testing: Does Bayes help?

Efron’s F̂DR(z) is an ‘empirical Bayes’ method – it ‘borrows strength’
from the collection zi , i = 1, . . . ,m, to say what happens at specific z.

Hierarchical models also do this, using prior assumptions of
exchangeability to motivate borrowing strength across subgroups.

As shown by Gelman et al. (2012)6, this is not the same as, for
example, Bonferroni.

They also discuss Type S errors, which are sign errors, i.e., saying an
association is positive when it is truly negative.

6In a paper entitled, ‘Why We (Usually) Don’t Have to Worry About Multiple
Comparisons’

74 / 80



Multiple testing: Does Bayes help?

Figure 13: Point and 95% intervals, reproduction of Figure 1 from Gelman
et al. (2012).

Compared to simpler methods, multilevel approaches do allow better
inference on vectors of parameters – generally by trading some bias
for reduced variance.
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Bayes Mixture Model

We consider the mixture model described in Chapter 4 of Wakefield
(2013).

The sampling model is Yi |µi ∼ N(µi , σ
2
i ), where the σ2

i are assumed
known.

We specify a mixture model for the collection [µ1, ..., µm], with

µi =

{
0 with probability π0
∼ N(δ, τ2) with probability π1 = 1− π0

We use mixture component indicators Hi = 0/1 to denote the
zero/normal membership model for transcript i .
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Bayes Mixture Model

Collapsing over µi gives the three stage model:

Stage One:

Yi | Hi , δ, τ, π0 ∼ind

{
N(0, σ2

i ) if Hi = 0
N(δ, σ2

i + τ2) if Hi = 1.

Stage Two: Hi | π1 ∼iid Bernoulli(π1), i = 1, ...,m.

Stage Three: Independent priors on the common parameters:

p(δ, τ, π0) = p(δ)p(τ)p(π0).
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Bayes Mixture Model

We illustrate the use of this model with

p(δ) ∝ 1,
p(τ) ∝ 1/τ

p(π0) = 1,

so that we have improper priors for δ and τ2.

The latter choice still produces a proper posterior, because we have
fixed variances at the first stage of the model.

Implementation is via a Markov chain Monte Carlo algorithm;
Exercise 4.4 of Wakefield (2013) derives details of the algorithm.
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Bayes Mixture Model

For transcript i , we may evaluate the posterior probabilities of the
alternative

Pr(Hi = 1 | yi) = E[Hi | y ]

= Eδ,τ2,π0|y

[
E(Hi | y , δ, τ 2, π0)

]
= Eδ,τ2,π0|y

[
Pr(Hi = 1 | y , δ, τ 2, π0)

]
= Eδ,τ2,π0|y

[
p(y | Hi = 1, δ, τ 2)× π1

p(y | Hi = 1, δ, τ 2)× π1 + p(y | Hi = 0)× π0

]
(7)

where

p(y | Hi = 1, δ, τ 2, π0) = [2π(σ2
i + τ 2)]−1/2 exp

[
− (yi − δ)2

2(σ2
i + τ 2)

]
p(y | Hi = 0, δ, τ 2, π0) = [2πσ2

i ]
−1/2 exp

[
− y2

i

2σ2
i

]
.
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Bayes Mixture Model
Expression (7) averages Pr(Hi = 1 | y , δ, τ 2, π0) with respect to the posterior
p(δ, τ 2, π0 | y), and may be simply evaluated via

1
T

T∑
t=1

p(y | Hi = 1, δ(t), τ 2(t))π
(t)
1

p(y | Hi = 1, δ(t), τ 2(t), π
(t)
0 )π

(t)
1 + p(y | Hi = 0)π(t)

0

given samples δ(t), τ 2(t), π
(t)
0 , t = 1, . . . ,T , from the Markov chain.
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Figure 14: Posterior probability of alternative for prostate cancer.
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