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Overview

In this set of notes a number of generalized linear models (GLMs) and
generalized linear mixed models (GLMMs) will be fitted using Bayesian
methods.

The integrated nested Laplace approximation (INLA) computational
technique will be illustrated
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Case control example: Data

We analyze a case control example using logistic regression models, first
using likelihood methods.

The data concern the numbers of cases (of the disease Leber Hereditary
Optic Neuropathy) and controls as a function of genotype at a particular
location (rs6767450).

x <- c(0, 1, 2)
# Case data for CC CT TT
y <- c(6, 8, 75)
# Control data for CC CT TT
z <- c(10, 66, 163)
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Case control example: Likelihood analysis

We fit the logistic regression model as a generalized linear model and then
examine the estimate and an asymptotic (large sample) 95% confidence
interval.

logitmod <- glm(cbind(y, z) ~ x, family = "binomial")
thetahat <- logitmod$coeff[2] # Log odds ratio
thetahat
## x
## 0.4787428
exp(thetahat) # Odds ratio
## x
## 1.614044
V <- vcov(logitmod)[2, 2] # standard error^2
# Asymptotic confidence interval for odds ratio
exp(thetahat - 1.96 * sqrt(V))
## x
## 0.9879159
exp(thetahat + 1.96 * sqrt(V))
## x
## 2.637004
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Case control example: Likelihood analysis
Now let’s look at a likelihood ratio test of H0 : θ = 0 where θ is the log
odds ratio associated with the genotype (multiplicative model).

logitmod
##
## Call: glm(formula = cbind(y, z) ~ x, family = "binomial")
##
## Coefficients:
## (Intercept) x
## -1.8077 0.4787
##
## Degrees of Freedom: 2 Total (i.e. Null); 1 Residual
## Null Deviance: 15.01
## Residual Deviance: 10.99 AIC: 27.79
dev <- logitmod$null.deviance - logitmod$deviance
dev
## [1] 4.01874
pchisq(dev, df = logitmod$df.residual, lower.tail = F)
## [1] 0.04499731

So just significant at the 5% level.
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FTO Example: Data

We reproduce the least squares analysis of the FTO data.

The lm function uses MLE, which is equivalent to ordinary least squares.

load(url("http://faculty.washington.edu/kenrice/sisgbayes/yX_FTO.Rdata"))
liny <- yX$y
linxg <- yX$X[, "xg"]
linxa <- yX$X[, "xa"]
linxint <- yX$X[, "xg"] * yX$X[, "xa"]
ftodf <- list(liny = liny, linxg = linxg, linxa = linxa,

linxint = linxint)
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FTO Example: LS fit
ols.fit <- lm(liny ~ linxg + linxa + linxint, data = ftodf)
summary(ols.fit)
##
## Call:
## lm(formula = liny ~ linxg + linxa + linxint, data = ftodf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8008 -0.8844 0.2993 1.2270 2.4819
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06822 1.42230 -0.048 0.9623
## linxg 2.94485 2.01143 1.464 0.1625
## linxa 2.84421 0.42884 6.632 5.76e-06 ***
## linxint 1.72948 0.60647 2.852 0.0115 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.918 on 16 degrees of freedom
## Multiple R-squared: 0.9393, Adjusted R-squared: 0.9279
## F-statistic: 82.55 on 3 and 16 DF, p-value: 5.972e-10
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INLA

Integrated nested Laplace approximation (INLA) is a technique for carrying
out Bayesian computation.

It is not a standard R package and must be downloaded from the
development website.

The inla function is the work horse.

# install.packages('INLA',
# repos='http://www.math.ntnu.no/inla/R/stable')
library(INLA)
# Data should be input to INLA as either a list or
# a dataframe
formula <- liny ~ linxg + linxa + linxint
lin.mod <- inla(formula, data = ftodf, family = "gaussian")

We might wonder, where are the priors?

We didn’t specify any. . . but INLA has default choices.
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FTO example via INLA: Lots of output available!
names(lin.mod)
## [1] "names.fixed" "summary.fixed"
## [3] "marginals.fixed" "summary.lincomb"
## [5] "marginals.lincomb" "size.lincomb"
## [7] "summary.lincomb.derived" "marginals.lincomb.derived"
## [9] "size.lincomb.derived" "mlik"
## [11] "cpo" "po"
## [13] "waic" "model.random"
## [15] "summary.random" "marginals.random"
## [17] "size.random" "summary.linear.predictor"
## [19] "marginals.linear.predictor" "summary.fitted.values"
## [21] "marginals.fitted.values" "size.linear.predictor"
## [23] "summary.hyperpar" "marginals.hyperpar"
## [25] "internal.summary.hyperpar" "internal.marginals.hyperpar"
## [27] "offset.linear.predictor" "model.spde2.blc"
## [29] "summary.spde2.blc" "marginals.spde2.blc"
## [31] "size.spde2.blc" "model.spde3.blc"
## [33] "summary.spde3.blc" "marginals.spde3.blc"
## [35] "size.spde3.blc" "logfile"
## [37] "misc" "dic"
## [39] "mode" "neffp"
## [41] "joint.hyper" "nhyper"
## [43] "version" "Q"
## [45] "graph" "ok"
## [47] "cpu.used" "all.hyper"
## [49] ".args" "call"
## [51] "model.matrix"
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FTO example: INLA analysis

The posterior means and posterior standard deviations are in very close
agreement with the OLS fits presented earlier.

coef(ols.fit)
## (Intercept) linxg linxa linxint
## -0.06821632 2.94485495 2.84420729 1.72947648
sqrt(diag(vcov(ols.fit)))
## (Intercept) linxg linxa linxint
## 1.4222970 2.0114316 0.4288387 0.6064695
lin.mod$summary.fixed[, 1:5]
## mean sd 0.025quant 0.5quant 0.975quant
## (Intercept) -0.06158122 1.4304379 -2.8994652 -0.06200624 2.774229
## linxg 2.93317509 2.0205097 -1.0787429 2.93377062 6.934649
## linxa 2.84236002 0.4313676 1.9859078 2.84245090 3.696813
## linxint 1.73264086 0.6094348 0.5236541 1.73244093 2.940860

The posterior means and standard deviations are in very close agreement with the OLS fits
presented earlier.
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FTO Posterior marginals
We now examine the posterior marginal distributions.

The posterior marginal distribution for the vector of regression coefficients
(including the intercept) is given below, and then we examine the posterior
marginal on the precision, 1/σε.

Check out the files that are written.

par(mfrow = c(2, 2))
plot(lin.mod$marginals.fixed$`(Intercept)`[, 2] ~ lin.mod$marginals.fixed$`(Intercept)`[,

1], xlab = expression(beta[0]), ylab = "Posterior Density",
type = "l", col = "blue", xlim = c(-6, 6), main = "Intercept")

plot(lin.mod$marginals.fixed$linxg[, 2] ~ lin.mod$marginals.fixed$linxg[,
1], xlab = expression(beta[1]), ylab = "Posterior Density",
type = "l", col = "blue", main = "Genotype")

plot(lin.mod$marginals.fixed$linxa[, 2] ~ lin.mod$marginals.fixed$linxa[,
1], xlab = expression(beta[2]), ylab = "Posterior Density",
type = "l", col = "blue", main = "Age")

plot(lin.mod$marginals.fixed$linxint[, 2] ~ lin.mod$marginals.fixed$linxint[,
1], xlab = expression(beta[3]), ylab = "Posterior Density",
type = "l", col = "blue", main = "Interaction")
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FTO example via INLA

In order to carry out model checking we rerun the analysis, but now switch
on a flag to obtain fitted values.

lin.mod <- inla(liny ~ linxg + linxa + linxint, data = ftodf,
family = "gaussian", control.predictor = list(compute = TRUE))

fitted <- lin.mod$summary.fitted.values[, 1]
# Now extract the posterior median of the
# measurement error sd
sigmamed <- 1/sqrt(lin.mod$summary.hyperpar[, 4])
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FTO: Residual analysis

With the fitted values we can examine the fit of the model. In particular:

Normality of the errors (sample size is relatively small).

Errors have constant variance (and are uncorrelated).
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FTO Residual analysis

The code below forms residuals and then forms

a QQ plot to assess normality,
a plot of residuals versus age, to assess linearity,
a plot of residuals versus fitted values, to see if an unmodeled
mean-variance relationship) and
a plot of fitted versus observed for an overall assessment of fit.
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FTO: Residual analysis

residuals <- (liny - fitted)/sigmamed
par(mfrow = c(2, 2))
qqnorm(residuals, main = "")
abline(0, 1, lty = 2, col = "red")
plot(residuals ~ linxa, ylab = "Residuals", xlab = "Age")
abline(h = 0, lty = 2, col = "red")
plot(residuals ~ fitted, ylab = "Residuals", xlab = "Fitted")
abline(h = 0, lty = 2, col = "red")
plot(fitted ~ liny, xlab = "Observed", ylab = "Fitted")
abline(0, 1, lty = 2, col = "red")

The model assumptions do not appear to be greatly invalidated here.
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Case-Control Example: INLA Analysis
We perform two analyses.
The first analysis uses the default priors in INLA (which are relatively flat).

x <- c(0, 1, 2)
y <- c(6, 8, 75)
z <- c(10, 66, 163)
cc.dat <- as.data.frame(rbind(y, z, x))
cc.mod <- inla(y ~ x, family = "binomial", data = cc.dat,

Ntrials = y + z)
summary(cc.mod)
##
## Call:
## c("inla(formula = y ~ x, family = \"binomial\", data = cc.dat, Ntrials
## = y + ", " z)")
## Time used:
## Pre = 4.82, Running = 0.328, Post = 0.305, Total = 5.45
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -1.808 0.455 -2.75 -1.791 -0.963 -1.757 0
## x 0.480 0.250 0.01 0.473 0.994 0.458 0
##
## Expected number of effective parameters(stdev): 2.00(0.00)
## Number of equivalent replicates : 1.50
##
## Marginal log-Likelihood: -17.89
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Prior choice

Suppose that for the odds ratio eβ we believe there is a 50% chance that
the odds ratio is less than 1 and a 95% chance that it is less than 5; with
q1 = 0.5, θ1 = 1.0 and q2 = 0.95, θ2 = 5.0, we obtain lognormal parameters
µ = 0 and σ = (log 5)/1.645 = 0.98.

There is a function in the SpatialEpi package to find the parameters, as
we illustrate.

library(SpatialEpi)
lnprior <- LogNormalPriorCh(1, 5, 0.5, 0.95)
lnprior
## $mu
## [1] 0
##
## $sigma
## [1] 0.9784688
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Prior choice

plot(seq(0, 7, 0.1), dlnorm(seq(0, 7, 0.1), meanlog = lnprior$mu,
sdlog = lnprior$sigma), type = "l", xlab = "x",
ylab = "LogNormal Density")
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Case-Control Example: INLA
# Now with informative priors
W <- LogNormalPriorCh(1, 1.5, 0.5, 0.975)$sigma^2
cc.mod2 <- inla(y ~ x, family = "binomial", data = cc.dat,

Ntrials = y + z, control.fixed = list(mean.intercept = c(0),
prec.intercept = c(0.1), mean = c(0), prec = c(1/W)))

summary(cc.mod2)
##
## Call:
## c("inla(formula = y ~ x, family = \"binomial\", data = cc.dat, Ntrials
## = y + ", " z, control.fixed = list(mean.intercept = c(0),
## prec.intercept = c(0.1), ", " mean = c(0), prec = c(1/W)))")
## Time used:
## Pre = 5.06, Running = 0.295, Post = 0.303, Total = 5.66
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -1.323 0.290 -1.901 -1.319 -0.764 -1.312 0
## x 0.199 0.154 -0.100 0.198 0.503 0.195 0
##
## Expected number of effective parameters(stdev): 1.44(0.00)
## Number of equivalent replicates : 2.08
##
## Marginal log-Likelihood: -16.64
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Longitudinal Example

Longitudinal Example
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Longitudinal Example

Longitinal Example

We follow Wang et al.~(2018, Section 5.3) and analyze longitudinal data on
reading scores (PIAT = Peabody Individual Achievement Test) measured on
n = 89 children at ages 6.5, 8.5 and 10.5 years.

We expect scores on the same children to be correlated, and one way of
acknowledging this is to include a random intercept in the model.

We let yij represent the reading score of child i at age tj , with t1 = 6.5,
t2 = 8.5 and t3 = 10.5.

library(ggplot2)
library(brinla)
data(reading, package = "brinla")

Jon Wakefield Departments of Statistics and Biostatistics, University of Washington2021 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Models2021-07-15 23 / 38



Longitudinal Example

Longitudinal Data

ggplot(reading, aes(agegrp, piat, group = id)) + geom_line()
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Longitudinal Example

A linear mixed effects model (LMEM)

We see a clear improvement in scores, which looks linear, but obvious
between-child variartion.

We fit the model

Yij = β0 + αi + β1tj + εij

αi ∼iid N(0, σ2α)
εij ∼iid N(0, σ2ε )

where β0, β1 are fixed effects, αi is a child-specific random effect and εij is
measurement error.
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Longitudinal Example

LMEM: Frequentist Analysis

We center age to provide an easier interpretation of the intercept, and
(later) it will be easier to specify priors.

library(lme4)
reading$cagegrp <- reading$agegrp - 8.5
lmod <- lmer(piat ~ cagegrp + (1 | id), reading)
fixef(lmod)
## (Intercept) cagegrp
## 31.224719 5.030899
sqrt(as.vector(diag(as.matrix(vcov(lmod)))))
## [1] 0.7090057 0.2510793
VarCorr(lmod)
## Groups Name Std.Dev.
## id (Intercept) 5.4569
## Residual 6.6996
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Longitudinal Example

Frequentist Analysis

summary(lmod)
## Linear mixed model fit by REML ['lmerMod']
## Formula: piat ~ agegrp + (1 | id)
## Data: reading
##
## REML criterion at convergence: 1868.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.94599 -0.59452 -0.02802 0.50717 2.86759
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 29.78 5.457
## Residual 44.89 6.700
## Number of obs: 267, groups: id, 89
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -11.5379 2.2489 -5.131
## agegrp 5.0309 0.2511 20.037
##
## Correlation of Fixed Effects:
## (Intr)
## agegrp -0.949
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Longitudinal Example

Bayesian Analysis

For the Bayesian analysis we have priors on the fixed effects:
β0 ∼ N(40, 102), β1 ∼ N(0, 42).

For the measurement error, the default relatively uninformative prior usually
suffices (there is a lot of information in the data on the measurement error).

For the random effects variance we use a penalized complexity (PC) prior
(Simpson et al.~2017) in which we say that Pr(σα > 10) = 0.05.
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Longitudinal Example

Bayesian Analysis

prior.fixed <- list(mean.intercept = 40, prec.intercept = 1/10^2,
mean = 0, prec = 1/4^2)

pcprior <- list(prec = list(prior = "pc.prec", param = c(10,
0.05)))

formula <- piat ~ cagegrp + f(id, model = "iid", hyper = pcprior)
imod <- inla(formula, family = "gaussian", data = reading,

control.fixed = prior.fixed)
imod$summary.fixed[, 1:5]
## mean sd 0.025quant 0.5quant 0.975quant
## (Intercept) 31.268518 0.7065240 29.879551 31.268012 32.658816
## cagegrp 5.010983 0.2516788 4.515954 5.011086 5.504963
bri.hyperpar.summary(imod)
## mean sd q0.025 q0.5 q0.975
## SD for the Gaussian observations 6.698059 0.3553508 6.033866 6.685126 7.428613
## SD for id 5.403906 0.6263179 4.254674 5.376843 6.709986
## mode
## SD for the Gaussian observations 6.657952
## SD for id 5.334598
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Longitudinal Example

bri.hyperpar.plot(imod)
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Longitudinal Example

Prediction

We now suppose we have a new child with measurements of 18 and 25 at
years 6.5 and 8.5, and we want to predict their outcome at 10.5, under the
assumption that they are exchangeable with the individuals in the dataset.

We code the missing value as NA and add the individual to the dataset.

Then we obtain the fitted value for this point (which is the 270th in the
dataset).
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Longitudinal Example

Prediction

newsub <- data.frame(id = 90, agegrp = c(6.5, 8.5,
10.5), cagegrp = c(-2, 0, 2), piat = c(20, 31,
NA))

nreading <- rbind(reading, newsub)
prior.fixed <- list(mean.intercept = 40, prec.intercept = 1/10^2,

mean = 0, prec = 1/4^2)
pcprior <- list(prec = list(prior = "pc.prec", param = c(10,

0.05)))
formula <- piat ~ cagegrp + f(id, model = "iid", hyper = pcprior)
imodp <- inla(formula, family = "gaussian", data = nreading,

control.fixed = prior.fixed, control.predictor = list(compute = TRUE))
pm90 <- imodp$marginals.fitted.values[[270]]
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Longitudinal Example

ggplot(data.frame(pm90), aes(x, y)) + geom_line() +
xlim(c(25, 55)) + xlab("PIAT") + ylab("Predictive Density")

0.0

0.1

0.2

0.3

0.4

30 40 50
PIAT

P
re

di
ct

iv
e 

D
en

si
ty

Jon Wakefield Departments of Statistics and Biostatistics, University of Washington2021 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Models2021-07-15 33 / 38



Approximate Bayes

Approximate Bayes
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Approximate Bayes

Approximate Bayes

We return to the case control example seen earlier.

Below we construct the posterior by hand

x <- c(0, 1, 2)
y <- c(6, 8, 75)
z <- c(10, 66, 163)
logitmod <- glm(cbind(y, z) ~ x, family = "binomial")
thetahat <- logitmod$coef[2]
V <- vcov(logitmod)[2, 2]
# 97.5 point of prior is log(1.5) so that we with
# prob 0.95 we think theta lies in (2/3,1.5)
W <- LogNormalPriorCh(1, 1.5, 0.5, 0.975)$sigma^2
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Approximate Bayes

Approximate Bayes: estimation

r <- W/(V + W)
r
## [1] 0.4055539
# Not so much data here, so weight on prior is
# high. Bayesian posterior median
exp(r * thetahat)
## x
## 1.214286
# Shrunk towards prior median of 1 Note: INLA
# estimate (with same prior) is 1.22 and
# approximate posterior SD here is
# sqrt(rV)=0.159, INLA version is 0.154.
# Bayesian approximate 95% credible interval
exp(r * thetahat - 1.96 * sqrt(r * V))
## x
## 0.8882832
exp(r * thetahat + 1.96 * sqrt(r * V))
## x
## 1.659932

Jon Wakefield Departments of Statistics and Biostatistics, University of Washington2021 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Models2021-07-15 36 / 38



Approximate Bayes

Approximate Bayes: hypothesis testing
Now we turn to testing using Bayes factors.

We examine the sensitivity to the prior on the alternative, π1.

pi1 <- c(1/2, 1/100, 1/1000, 1/10000, 1/1e+05) # 5 prior probs on the null
source("http://faculty.washington.edu/jonno/BFDP.R")
BFcall <- BFDPfunV(thetahat, V, W, pi1)
BFcall
## $BF
## x
## 0.6182773
##
## $pH0
## x
## 0.256323
##
## $pH1
## x
## 0.4145761
##
## $BFDP
## [1] 0.3820589 0.9839253 0.9983836 0.9998383 0.9999838

So data are twice as likely under the alternative (0.502) as compared to the null (0.256).

Apart from under the 0.5 prior, under these priors the overall evidence is of no association.
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Approximate Bayes

Exercises

For the case-control data, suppose we wish to specify a prior with a 5%
point for the odds ratio of 0.2 and a 95% point for the odds ratio of 5:

Use the LogNormalPriorCh to find the appropriate normal distribution
for the log odds ratio
Use this prior within INLA and report the posterior median and a 95%
interval for the log odds ratio
Are these summaries very different from the INLA fit with default priors?
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