2020 SISG Bayesian Statistics for Genetics R
Notes: Binomial Sampling 2

Jon Wakefield
Departments of Statistics and Biostatistics, University of
Washington

2020-07-19



Introduction

In these notes, in the context of binomial sampling, we look at
» specifying a prior distribution
» prediction and
> testing.

We also analyze allele specific expression (ASE) data



Specifying a prior distribution

The code below finds the beta distribution, i.e. the a and the b,
with 5% and 95% points of 0.1 and 0.6.

# Function to find a and b
priorch <- function(x, qi, g2, pl, p2) {
(p1 - pbeta(ql, x[1], x[2]))"2 + (p2 - pbeta(q2,
x[1], x[2]))"2
}
pl <- 0.05
p2 <- 0.95
ql <- 0.1
q2 <- 0.6
opt <- optim(par = c(1, 1), fn = priorch, ql = qi,
92 = g2, pl = pl1, p2 = p2, control = list(abstol = 1e-08))
cat("a and b are ", opt$par, "\n")
## a and b are 2.730616 5.667462
probvals <- seq(0, 1, 0.001)
plot(probvals, dbeta(probvals, shapel = opt$par[i],
shape2 = opt$par[2]), type = "1", xlab = expression(theta),
ylab = "Beta Density")
abline(v = ql1, col = "red")
abline(v g2, col = "red")



Specifying a prior distribution
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Predictions from a Binomial Distribution

We now consider prediction.
Assume y |6 ~ binomial(N, 8) and 6 ~ beta(a, b).

We suppose we wish to predict the number of successes Z from M
trials.

The predictive distribution is

Pr(ZIy)—(M> [(N+a+b) T(aty+2)(b+N—y+M-z)

z JT(y+al(N—-y+b) Ma+b+ N+ M)

forz=0,...,M.



Predictions from a Binomial Distribution

We demonstrate with a uniform prior and observing y = 2 successes
from N = 20 trials, and suppose we wish to predict the number of
successes we will see in 10 additional trials.

# User written function
binomialpred <- function(a, b, y, N, z, M) {
lchoose(M, z) + lgamma(a + b + N) - lgamma(a +

y) - lgamma(b + N - y) + lgamma(a + y + z) +
lgamma(b + N -y + M - z) - lgamma(a + b +
N + M)

}

# Set up the prior and data

a<-b<g-1

y <= 2

N <- 20

M <- 10



Predictions from a Binomial Distribution

Along with the Bayesian predictive distribution, we also include a
simple approach in which we assume simply take a
binomial (M,y/N) distribution, i.e. assuming the probability is
known to be the sample fraction.
binpred <- NULL
z <- seq(0, M)
sumcheck <- 0
for (i in 1: (M + 1)) {

binpred[i] <- exp(binomialpred(a, b, y, N, z[i],

M)

sumcheck <- sumcheck + binpred[i]

}
likpred <- dbinom(z, M, prob = y/N)
cat("Sum of probs = ", sumcheck, "\n")

## Sum of probs = 1



Predictions from a Binomial Distribution

plot(binpred ~ z, type = "h", col = "red", ylim = c(0,
max (likpred, binpred)), ylab = "Predictive Distribution")
points(z + 0.2, likpred, type = "h", col = "blue",
lty = 2)
legend("topright", legend = c("Likelihood Prediction",
"Bayesian Prediction"), 1ty = 2:1, col = c("blue",
"red"), bty = "n"



Predictions from a Binomial Distribution
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Predictions with a Binomial Distribution

We now simulate directly via:
— Sampling from 6() ~ p(fly), s =1, ...
— Sampling from z(5) ~ p(z|6), s =1,...

a<-b<-1
y <= 2
N <- 20
M <- 10
nsim <- 10000
theta <- z <- NULL # This is inefficient but makes method clear
for (s in 1:nsim) {
theta[s] <- rbeta(l, a +y, b + N - y)
z[s] <- rbinom(1, M, thetals])



Predictions with a Binomial Distribution

barplot(table(z), xlab = "z")
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Differences in Binomial Proportions

We consider an example in which we wish to compare allele
frequencies between two populations.

Let 61 and 6, be the allele frequencies in the NE and US population
from which the samples were drawn, respectively.

The allele frequencies were 10.69% and 13.21% with sample sizes of
650 and 265, in the NE and US samples, respectively.

We assume independent beta(1,1) priors on each of #; and 6.



Differences in Binomial Proportions

The y1 and y2 data (i.e. the numbers with the allele in the two
populations) were reconstructed from figures in the original paper in
which only the denominators and the frequencies were given, hence
the floor function.

N1 <-
yl <-
N2 <-
y2 <-
nsamp

650

floor(N1 * 0.1069)
265

floor(N2 * 0.1321)
<- 10000

a<-b<-1

postl
post2

<- rbeta(nsamp, yl1 + a, N1 - y1 + b)
<- rbeta(nsamp, y2 + a, N2 - y2 + b)



Differences in Binomial Proportions

The key step is in constructing a sample estimate of the difference
in probabilities #; — 0>.

par(mfrow = c(1, 3))

hist(postl, xlab = expression(theta[1]), main
cex.lab = 1.5)

hist(post2, xlab = expression(theta[2]), main
cex.lab = 1.5)

nn
>

#

hist(postl - post2, xlab = expression(paste(thetal[l],
"-" " thetal[2])), main = "", cex.lab = 1.5)

abline(v = 0, col = "red")

sum(postl - post2 > 0)/nsamp

#4 [1] 0.1217



Differences in Binomial Proportions
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Analysis of ASE data

download.file("http://faculty.washington.edu/kenrice/sisgbayes/ASEgene.txt",
destfile = "ASEgene.txt")
ASEdat <- read.table("ASEgene.txt", header = TRUE)
head (ASEdat)
## Y N
## 1 62 107
## 2 33 59
## 3 658 1550
## 4 14 61
## 5 57 153
## 6 218 451
dim(ASEdat)
## [1] 4844 2
ngenes <- dim(ASEdat) [1]
pvals <- NULL
for (i in 1:ngenes) {
pvals[i] <- binom.test(ASEdat$Y[i], ASEdat$N[i],
p = 0.5, alternative = "two.sided") [["p.value"]]



Analysis of ASE data

# Function to evaluate Bayes factors for a binomial
# likeltihood and beta prior, and a point null at p0
BFbinomial <- function(N, y, a, b, p0) {
logPrHO <- 1lchoose(N, y) + y * log(p0) + (N - y) =*
log(1 - pO)
logPrH1 <- 1lchoose(N, y) + gamma(a + b) - lgamma(a) -
lgamma(b) + lgamma(y + a) + lgamma(N - y +
b) - lgamma(N + a + Db)
logBF <- logPrHO - logPrH1
list(logPrHO = logPrHO, logPrH1 = logPrH1, logBF = logBF)
}
nsim <- 5000
a<-1
b<-1
pO <- 0.5



Analysis of ASE data

postprob <- logBFr <- rep(0, ngenes)
pcutoff <- 0.05/length(pvals)
for (i in 1:ngenes) {
BFcall <- BFbinomial (ASEdat$N[i], ASEdat$Y[i],
a, b, p0)
logBFr[i] <- -BFcall$logBF
postprob[i] <- pbeta(0.5, a + ASEdat$Y[i], b +
ASEdat$N[i] - ASEdat$Y[il)

}

cat("log BFr > log(150) = ", sum(logBFr > log(150)),
n \n")

## log BFr > log(150) = 197

cat("log BFr > log(20) = ", sum(logBFr > log(20)),
n \nll)

## log BFr > log(20) = 359

cat("p-values > ", pcutoff, sum(pvals < pcutoff),
"\n")

## p-values >  1.032205e-05 111

cat ("postprobs < 0.01 and > 0.99 ", sum(postprob <
0.01), sum(postprob > 0.99), "\n")

## postprobs < 0.01 and > 0.99 278 242



Histogram of p-values for ASE data

hist(pvals, xlab = "p-values", main = "")
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Histogram of posterior probabilities for ASE data

hist(postprob, xlab = expression(paste("Posterior Prob of ",
theta, " < 0.5")), main = "")
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Analysis of ASE data
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Analysis of ASE data
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Analysis of ASE data
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Exercises

» Redo the seroprevalence example from the first lecture with a
Beta prior on the prevalence which has Pr(6 < 0.01) = 0.05
and Pr(6 > 0.03) = 0.05.

» Two populations are sampled to learn about the frequencies of
a particular allele. The observed data are Ny = 100, y3 = 30 in
population 1 and N> = 150, y» = 60 in population 2. Let the
unobserved true frequencies in the two complete populations be
91 and 92.

» With Beta(1,2) priors on 6; and 6, what are the Beta posterior
distributions 61 |y; and 6,]y,?

» Obtain samples from the posteriors for ; and 6, and find the
posterior medians and 90% intervals for each.

» Obtain samples for §; — 65|y and estimate the posterior
probability that 6; > 6.



Exercises

» Experiment with the priors Beta(a, a) for the ASE example. In
particular, for a = 2:

» Obtain a histogram of the posterior probabilities Pr(6 < 0.5]y),
across genes.

> Plot these posterior probabilities versus the versions under
a =1, and comment.

» How sensistive are the (log) Bayes factors to the prior
specification?

» For how many genes would we reject Hp : 0 = 0.5 if we use a
rule of 1/BF > 1507



