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Introduction

As we have seen there is an important duality between probability
distributions and samples.

In many approaches to implementation, Bayesian inference is carried
out via samples from the posterior distibution.

In this lecture we demonstrate this approach in the context of
binomial sampling.



Samples to Summarize Beta Distributions
Probability distributions can be investigated by generating samples
and then examining summaries such as histograms, moments and
quantiles.

# First look at the theoretical quantiles of a
# uniform distribution, a beta(1,1)
qbeta(p = c(0.05, 0.1, 0.5, 0.9, 0.95), 1, 1)
## [1] 0.05 0.10 0.50 0.90 0.95
# Now find the mean and quantiles from a large
# sample from a uniform
nsim <- 5000
samp <- rbeta(nsim, 1, 1)
mean(samp)
## [1] 0.5022018
quantile(samp, p = c(0.05, 0.1, 0.5, 0.9, 0.95))
## 5% 10% 50% 90% 95%
## 0.04806048 0.10056578 0.50305460 0.90181483 0.95135381
# These differ slightly from the theoretical
# quantiles because of sampling variability



Samples to Summarize Beta Distributions

We now examine a histogram representation of a random variable θ
with a uniform distribution, and then add a vertical line at the mean.

hist(samp, xlab = expression(theta), ylab = "Beta Density",
main = "a=1, b=1", freq = F, nclass = 10)

abline(v = mean(samp), col = "red")



Samples to Summarize Beta Distributions

a=1, b=1

θ

B
et

a 
D

en
si

ty

0.0 0.4 0.8

0.
0

0.
4

0.
8



Samples to Summarize Beta Distributions

Now we examine a beta(4,2) distribution.

We first look at the theoretical quantiles (using the qbeta function),
and then simulate a sample and evaluate the empirical quantiles.

qbeta(p = c(0.05, 0.1, 0.5, 0.9, 0.95), 4, 2)
## [1] 0.3425917 0.4161096 0.6861898 0.8877650 0.9235596
samp <- rbeta(nsim, 4, 2)
mean(samp)
## [1] 0.6673624
quantile(samp, p = c(0.05, 0.1, 0.5, 0.9, 0.95))
## 5% 10% 50% 90% 95%
## 0.3445336 0.4127173 0.6899770 0.8903241 0.9230485
hist(samp, xlab = expression(theta), ylab = "Beta Density",

main = "a=4, b=2", freq = F, nclass = 10)
abline(v = mean(samp), col = "red")



Samples to Summarize Beta Distributions
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Samples for Describing Weird Parameters
So far the samples we have generated have produced summaries we
can easily obtain anyway.

But what about functions of the probability θ, such as the odds
θ/(1− θ)?

Once we have samples for θ we can simply transform the samples to
the functions of interest.

In a prior specification context, we may have clearer prior opinions
about the odds, than the probability.

Below we give a histogram representation of the prior on the odds
θ/(1− θ) when θ is beta(10,10).

nsim <- 5000
samp <- rbeta(nsim, 10, 10)
odds <- samp/(1 - samp)



Samples for Describing Weird Parameters
hist(odds, xlab = "Odds", main = expression(paste("Odds with ",

theta, " from beta(10,10)")))
abline(v = mean(odds), col = "red")
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Are Priors Really Uniform?

Suppose we have a uniform prior on θ, i.e. θ ∼ beta(1, 1).

This prior is not uniform on the function

φ = log
(

θ

1− θ

)
.

nsim <- 5000
theta <- rbeta(nsim, 1, 1)
phi <- log(theta/(1 - theta))
hist(phi, xlab = expression(paste("Log Odds ", phi)),

nclass = 30, main = expression(paste("Log Odds with ",
theta, " from a beta(1,1)")))

abline(v = 0, col = "red")



Are Priors Really Uniform?

Log Odds with θ from beta(1,1)

Log Odds φ

F
re

qu
en

cy

−10 −5 0 5

0
20

0
50

0



Beta Prior, Binomial Likelihood and Beta Posterior

We consider a beta prior for a proportion θ and a binomial likelihood
and beta posterior that these choices lead to.

The prior is beta(2,3) the likelihood is proportional to a
binomial(7,3) and the posterior is beta(7+2,3+3).

a <- 2
b <- 3
N <- 10
y <- 7
thetaseq <- seq(0, 1, 0.001)
prior <- dbeta(thetaseq, a, b)
likelihood <- dbeta(thetaseq, y + 1, N - y + 1)
posterior <- dbeta(thetaseq, a + y, b + N - y)



Beta Prior, Binomial Likelihood and Beta Posterior

plot(posterior ~ thetaseq, xlab = expression(theta),
type = "n", ylab = "Density")

lines(prior ~ thetaseq, type = "l", col = "red", lwd = 2,
lty = 1)

lines(likelihood ~ thetaseq, type = "l", col = "green",
lwd = 2, lty = 2)

lines(posterior ~ thetaseq, type = "l", col = "blue",
lwd = 2, lty = 3)

legend("topleft", legend = c("Prior", "Likelihood",
"Posterior"), col = c("red", "green", "blue"),
lwd = 2, bty = "n", lty = 1:3)



Beta Prior, Likelihood and Posterior
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Specifying a prior distribution
The code below finds the beta distribution, i.e. the a and the b,
with 5% and 95% points of 0.1 and 0.6.

# Function to find a and b
priorch <- function(x, q1, q2, p1, p2) {

(p1 - pbeta(q1, x[1], x[2]))^2 + (p2 - pbeta(q2,
x[1], x[2]))^2

}
p1 <- 0.05
p2 <- 0.95
q1 <- 0.1
q2 <- 0.6
opt <- optim(par = c(1, 1), fn = priorch, q1 = q1,

q2 = q2, p1 = p1, p2 = p2, control = list(abstol = 1e-08))
cat("a and b are ", opt$par, "\n")
## a and b are 2.730616 5.667462
probvals <- seq(0, 1, 0.001)
plot(probvals, dbeta(probvals, shape1 = opt$par[1],

shape2 = opt$par[2]), type = "l", xlab = expression(theta),
ylab = "Beta Density")

abline(v = q1, col = "red")
abline(v = q2, col = "red")



Specifying a prior distribution
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Predictions from a Binomial Distribution

We now consider prediction.

Assume y |θ ∼ binomial(N, θ) and θ ∼ beta(a, b).

We suppose we wish to predict the number of successes Z from M
trials.

The predictive distribution is

Pr(z |y) =
(

M
z

)
Γ(N + a + b)

Γ(y + a)Γ(N − y + b)
Γ(a + y + z)Γ(b + N − y + M − z)

Γ(a + b + N + M)

for z = 0, . . . ,M.



Predictions from a Binomial Distribution
We demonstrate with a uniform prior and observing y = 2 successes
from N = 20 trials, and suppose we wish to predict the number of
successes we will see in 10 additional trials.

# User written function
binomialpred <- function(a, b, y, N, z, M) {

lchoose(M, z) + lgamma(a + b + N) - lgamma(a +
y) - lgamma(b + N - y) + lgamma(a + y + z) +
lgamma(b + N - y + M - z) - lgamma(a + b +
N + M)

}
a <- b <- 1
y <- 2
N <- 20
M <- 10
binpred <- NULL
z <- seq(0, M)



Predictions from a Binomial Distribution

Along with the Bayesian predictive distribution, we also include a
simple approach in which we assume simply take a
binomial(M,y/N) distribution, i.e. assuming the probability is
known to be the sample fraction.

sumcheck <- 0
for (i in 1:(M + 1)) {

binpred[i] <- exp(binomialpred(a, b, y, N, z[i],
M))

sumcheck <- sumcheck + binpred[i]
}
likpred <- dbinom(z, M, prob = y/N)
cat("Sum of probs = ", sumcheck, "\n")
## Sum of probs = 1



Predictions from a Binomial Distribution

plot(binpred ~ z, type = "h", col = "red", ylim = c(0,
max(likpred, binpred)), ylab = "Predictive Distribution")

points(z + 0.2, likpred, type = "h", col = "blue",
lty = 2)

legend("topright", legend = c("Likelihood Prediction",
"Bayesian Prediction"), lty = 2:1, col = c("blue",
"red"), bty = "n")



Predictions from a Binomial Distribution
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Predictions with a Binomial Distribution

We now simulate directly via:

– Sampling from θ(s) ∼ p(θ|y), s = 1, . . . ,S.

– Sampling from z(s) ∼ p(z |θ), s = 1, . . . ,S.

a <- b <- 1
y <- 2
N <- 20
M <- 10
nsim <- 10000
theta <- z <- NULL # This is inefficient but makes method clear
for (s in 1:nsim) {

theta[s] <- rbeta(1, a + y, b + N - y)
z[s] <- rbinom(1, M, theta[s])

}



Predictions with a Binomial Distribution

barplot(table(z), xlab = "z")
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Differences in Binomial Proportions

We consider an example in which we wish to compare allele
frequencies between two populations.

Let θ1 and θ2 be the allele frequencies in the NE and US population
from which the samples were drawn, respectively.

The allele frequencies were 10.69% and 13.21% with sample sizes of
650 and 265, in the NE and US samples, respectively.

We assume independent beta(1,1) priors on each of θ1 and θ2.



Differences in Binomial Proportions

The y1 and y2 data (i.e. the numbers with the allele in the two
populations) were reconstructed from figures in the original paper in
which only the denominators and the frequencies were given, hence
the floor function.

N1 <- 650
y1 <- floor(N1 * 0.1069)
N2 <- 265
y2 <- floor(N2 * 0.1321)
nsamp <- 10000
a <- b <- 1
post1 <- rbeta(nsamp, y1 + a, N1 - y1 + b)
post2 <- rbeta(nsamp, y2 + a, N2 - y2 + b)



Differences in Binomial Proportions

The key step is in constructing a sample estimate of the difference
in probabilities θ1 − θ2.

par(mfrow = c(1, 3))
hist(post1, xlab = expression(theta[1]), main = "",

cex.lab = 1.5)
hist(post2, xlab = expression(theta[2]), main = "",

cex.lab = 1.5)
#
hist(post1 - post2, xlab = expression(paste(theta[1],

"-", theta[2])), main = "", cex.lab = 1.5)
abline(v = 0, col = "red")
sum(post1 - post2 > 0)/nsamp
## [1] 0.1309



Differences in Binomial Proportions
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Analysis of ASE data

ASEdat <- read.table("ASEgene.txt", header = TRUE)
head(ASEdat)
## Y N
## 1 62 107
## 2 33 59
## 3 658 1550
## 4 14 61
## 5 57 153
## 6 218 451
dim(ASEdat)
## [1] 4844 2
ngenes <- dim(ASEdat)[1]
pvals <- NULL
for (i in 1:ngenes) {

pvals[i] <- binom.test(ASEdat$Y[i], ASEdat$N[i],
p = 0.5, alternative = "two.sided")[["p.value"]]

}



Analysis of ASE data

# Function to evaluate Bayes factors for a binomial
# likelihood and beta prior, and a point null at p0
BFbinomial <- function(N, y, a, b, p0) {

logPrH0 <- lchoose(N, y) + y * log(p0) + (N - y) *
log(1 - p0)

logPrH1 <- lchoose(N, y) + gamma(a + b) - lgamma(a) -
lgamma(b) + lgamma(y + a) + lgamma(N - y +
b) - lgamma(N + a + b)

logBF <- logPrH0 - logPrH1
list(logPrH0 = logPrH0, logPrH1 = logPrH1, logBF = logBF)

}
nsim <- 5000
a <- 1
b <- 1
p0 <- 0.5



Analysis of ASE data

postprob <- logBFr <- rep(0, ngenes)
pcutoff <- 0.05/length(pvals)
for (i in 1:ngenes) {

BFcall <- BFbinomial(ASEdat$N[i], ASEdat$Y[i],
a, b, p0)

logBFr[i] <- -BFcall$logBF
postprob[i] <- pbeta(0.5, a + ASEdat$Y[i], b +

ASEdat$N[i] - ASEdat$Y[i])
}
cat("log BFr > log(150) = ", sum(logBFr > log(150)),

"\n")
## log BFr > log(150) = 197
cat("log BFr > log(20) = ", sum(logBFr > log(20)),

"\n")
## log BFr > log(20) = 359
cat("p-values > ", pcutoff, sum(pvals < pcutoff),

"\n")
## p-values > 1.032205e-05 111
cat("postprobs < 0.01 and > 0.99 ", sum(postprob <

0.01), sum(postprob > 0.99), "\n")
## postprobs < 0.01 and > 0.99 278 242



Histogram of p-values for ASE data

hist(pvals, xlab = "p-values", main = "")

p−values

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
10

00



Histogram of posterior probabilities for ASE data

hist(postprob, xlab = expression(paste("Posterior Prob of ",
theta, " < 0.5")), main = "")
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Analysis of ASE data
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Analysis of ASE data
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Analysis of ASE data
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