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Introduction

• With the advent of high-throughput technologies in genomics there is now
the possibility of carrying out millions of tests, and so the implications of
such multiple testing must be carefully considered.

• In this lecture we will review the rationale for p-values.

• We then explore the connection between p-values and Bayes factors.

• Multiple testing will be reviewed and a Bayesian perspective presented.

• An example in the context of a pharmacogenomics GWAS will be
presented.

• The use of substantive prior information will also be demonstrated.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Conclusions References

Motivating Data Description

• The Vitamin Intervention for Stroke Prevention (VISP) trial is an
NIH-funded, multi-center, double-blind, randomized, controlled clinical
trial.

• More detail in Wakefield et al. (2014).

• The aim is to determine whether a daily intake of high dose folic acid and
vitamins B6 and B12 was associated with cardiovascular endpoints.

• We examine data on n = 1670 individuals, with 837 randomized to the
high dose and 833 to the low dose.

• The outcome is the intermediary variable homocysteine level: high levels in
blood are associated with cardiovascular disease.

• In the VISP trial, levels were measured longitudinally but for simplicity we
take as outcome the difference between the baseline and the first
post-baseline measurements: Y will represent this difference.

• The change was -0.37 µmol/L in the low dose group versus -2.36 µmol/L
in the high dose group, i.e., a difference of -1.99 µmol/L (p < 2× 10−16).
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Marker-Specific Treatment Effects

• An increasingly important venture is examining treatment effects by
marker (e.g. SNP): a particular type of gene-environment interaction.

• Historically, candidate gene studies were popular, but now genome-wide
scans are also being performed, see Daly (2010) for a review.

• Pharmacogenomics-related traits: Drug response, susceptibility to adverse
drug reactions,...

• Key Statistical Point: The estimated interactions are based on subgroups
of varying sizes, so that the power varies substantially across tests.

• In the VISP trial, there are J = 803, 122 SNPs and suppose we define
subgroups as having at least one copy of the minor allele.

• The number in this subgroup ranges between 21 and 1564 across SNPs.
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• Aim: To identify marker-defined populations with improved response to
DAA (for treatment of severe sespis).
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The Statistical Set-Up

• We begin with a very simple situation in which we have a single parameter
of interest θ.

• Assume the null of interest is

H0 : θ = 0

with θ, for example, a treatment difference, or a log odds ratio, or a log
hazard ratio.

• We assume an analysis yields a statistic T for which large values indicate
departures from the null.

• For example, the squared Wald statistic, T = θ̂ 2/V , with V the
asymptotic variance of the MLE1.

• An alternative is the likelihood ratio statistic.

1T=Z 2 where Z is the Z -score
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Types of Testing

• The observed p-value is given by:

p = Pr(T > tobs|H0)

where tobs is a number that is evaluated for the data at hand.

• To report p only, gives a pure significance test.

• A small p-value can arise because:
• H0 is true but we were “unlucky”.
• H0 is not true.

– to decide which explanation is responsible depends crucially on the prior
belief on whether H0 is true or not.

Key question: How small is small?
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Types of Testing

• A test of significance sets a cut-off value (e.g. α = 0.05) and rejects H0 if
p < α.

Again: How to pick α?

• A type I error is to reject H0 when it is true, and a test of significance
controls the type I error (whereas a pure significance test does not).

• A type II error occurs when H1 is true but H0 is not rejected.

• A hypothesis test goes one step further and specifies an alternative
hypothesis.

• A decision is then taken as to which of H0 and H1 is chosen.

• The celebrated Neyman-Pearson lemma shows that for fixed α-level the
likelihood ratio statistic maximizes the power.

• Wouldn’t it be more reasonable to balance type I and type II errors?
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The Dangers of Fixed Significance Levels

• Example: Sample, Y1, ...,Yn of size n from normal(θ, 1),

H0 : θ = 0, H1 : θ = 1.

Obvious that we should reject H0 for Y > k, a constant.

• The table below illustrates the problems of choosing a fixed α, regardless
of sample size — imbalance in α and β as a function of n.

n α β k
1 0.01 0.91 6.21

25 0.01 0.0038 0.42
100 0.01 8× 10−15 2.5× 10−12

• Also: Statistical versus practical significance.

• For both p-values and α levels we need thresholds that decrease as a
function of the sample size n. Pearson (1953, p. 68), “...the quite
legitimate device of reducing α as n increases”.
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Calibrating p-values
• With π0 = Pr(H0), Sellke, Bayarri and Berger (2001) show that:

Pr(H0| data ) ≥
{

1− 1

2.72 p log p
× 1− π0

π0

}−1

(1)

• A small p-value doesn’t translate to a small probability that the null is not
true.
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Why does anyone use p-values?

• Historically, it was usual to carry out well-powered (single) experiments,
and the prior on the alternative was not small.

• With respect to (1) and with π0 = 0.5:
• p-value = 0.05 gives Pr(H0| data ) > 0.29.
• p-value = 0.01 gives Pr(H0| data ) > 0.11.

• Scientists well-calibrated in their own discipline?

• Perhaps, but if you’re going to be subjective, why not be formal about it?

• Aside: Reason for lack of replication in observational epidemiology? Along
with confounding, data dredging, measurement error,...
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Calibrating α-Levels

• We want Pr(H0| data ), where “data” corresponds to the event T > tfix,
but to obtain this we must specify alternatives – consider a simple
alternative, say H1 : θ = θ1.

• Then,

Posterior Odds of H0 =
Pr(T > tfix|H0)

Pr(T > tfix|H1)
× Pr(H0)

Pr(H1)

=
α

1− β × Prior Odds of H0

• For ranking associations (which does not involve the prior odds if constant
across tests): must consider the power, Pr( data |H1).

• For calibration: must consider the prior odds of H0.
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A Sanity Check via a Simple Example

• The model:
Yi |θ ∼iid normal(θ, σ2), σ2 known,

i = 1, ..., n.

• The distribution of the MLE is:

θ̂ = Y ∼ normal(θ,V )

with V = σ2/n,

T =
nY

2

σ2
.

• Null and alternative hypotheses are

H0 : θ = 0, H1 : θ 6= 0,
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A Sanity Check via a Simple Example

• Under H1 assume the prior θ ∼ normal(0,W ).

• Recall from Lectures 3 and 4, that the evidence in the data for a pair of
hypotheses is summarized in the Bayes factor.

• The Bayes factor is

BF =
p(y|H0)

p(y|H1)
=

∏n
i=1 dnorm(yi |0, σ2)∫

θ

∏n
i=1 dnorm(yi |θ, σ2)× dnorm(θ|0,W )dθ

where dnorm is shorthand for the density of a normal random variable.

• We take W = σ2, which corresponds to the “unit information prior” of
Kass and Wasserman (1995) (this choice not so important).

• With a prior odds, PO, and ratio of costs R this gives the decision rule to
reject H0:

BF× PO =
√

1 + n × exp

(
−T

2

n

1 + n

)
× PO < R

• Notice how this depends on T and n.
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A Bayesian Test Statistics Threshold

• Rearrangement gives a threshold for rejection of:

T >
2(1 + n)

n
log

(
PO

R

√
1 + n

)
• For relatively large prior odds on the null PO: require T to be larger (more

evidence).

• For relatively large cost of Type II errors R (so that we are averse to type
II error, i.e. missing signals): require T to be smaller (less evidence).

• Not such a simply summarization for n but, beyond a certain point, as n
gets larger, we require larger T (more evidence).

• The above should be contrasted with the usual frequentist approach of

T > const

with the constant usually chosen to control the type I error.
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A Bayesian Test Statistic Threshold

• The table below evaluates the probability of rejection given H0. We
assume R = 1.

• For π0 = 0.5 and n = 20, 50, 100 the thresholds give ≈ 0.05 — the
situation in which this infamous threshold was first derived?

π0 = 0.25 π0 = 0.50 π0 = 0.95
n = 10 0.64 0.10 0.0025
n = 20 0.35 0.074 0.0022
n = 50 0.18 0.045 0.0016

n = 100 0.12 0.031 0.0011
n = 1000 0.030 0.0085 0.00034
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Calibration with p-values

Interesting question: When do Bayes and frequentist p-value inference
coincide?

• Consider an approximate Bayes approach. We have parameter of interest θ
with

• Data: MLE θ̂ and standard error
√
V to give likelihood θ̂|θ ∼ normal(θ,V ),

• Prior: θ ∼ normal(0,W ).

• The null and alternative hypotheses of interest are

H0 : θ = 0 H1 : θ 6= 0.

• This leads to the approximate Bayes factor (ABF)

ABF =
1√

1− r
exp

(
−Z 2

2
r

)
=

√
V + W

V
exp

(
−Z 2

2

W

V + W

)
where r = W /(V + W ) and Z = θ̂/

√
V .

• Here we write explicitly as a function of Z , with T = Z 2.
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Calibration with p-values

• ABF =
√

V+W
V

exp
(
− Z2

2
W

V+W

)
, which depends on n, because V does.

• Recall we reject if ABF × PO > threshold R.

• We are trying to find a Bayes factor that does not depend on n, to
correspond with a p-value rule.

• We can reverse engineer a version of ABF that does not depend on n by
taking the prior variance W = K × V , where K is a constant.

• Then we have approximate Bayes factor

ABFp =
√

1 + K exp

(
−Z 2

2

K

1 + K

)
.

• Important point: No dependence on n, i.e. it depends on Z only, and
therefore on the p-value only.

• If we use the above prior and Bayes factor in multiple tests, then the
rankings of p-values and ABFp will be identical. The problem is that this
prior makes no sense.
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Calibration with p-values

• The ABF with W not depending on n is consistent (you get the right
answer with a lot of data), whereas the “p-value” Bayes factor is not.

• The original ABF can be inverted to give a rule for Z 2 that depends on
PO, R and n (as with the simple example presented previously).

• For more details, see Wakefield (2009).

• Figure 1 shows the behavior of this rule as a function of the sample size n,
and for different choices of the prior on the alternative π1 and the ratio of
costs of type II to type I errors.

• Larger values on the y axis correspond to less extreme test statistics.

• The curves have the expected ordering and, as n gets large, a greater and
greater level of evidence is required.

• This is as we would expect because as the sample size increases we want
both Type I and Type II errors to go to zero.
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A Bayes Factor Threshold
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Figure 1 : Threshold for rejection, on the log10(p)-value scale, versus sample size.
Notice how the threshold is decreasing with increasing sample size.
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Multiple Testing

The problem: m tests being carried out, often (in a GWAS context, for
example) with a tiny probability of any association being non-null.

We describe:

• Family-wise error: Bonferroni and Sidak.

• Control of expected number of false discoveries.

• Control of false discovery rate.

• A Bayesian perspective.
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Framework for Multiple Testing

Possibilities with m tests and when K are flagged as requiring further attention:

Non-Flagged Flagged
H0 A B m0

H1 C D m1

m − K K m

• m0 is the number of true nulls.

• B is the number of type I errors.

• C is the number of type II errors.

Problem: To select a rule that will determine K .

We discriminate between:

• A sensible criterion.

• How the criterion should depend on sample size.
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The Family-Wise Error Rate

Non-Flagged Flagged
H0 A B m0

H1 C D m1

m − K K m

• The family-wise error rate (FWER) is the probability of making at least
one Type I error, i.e.

Pr(B ≥ 1| all H0 true ).

• Let Bi be the event that the i-th null is incorrectly rejected, so that
B = ∪m

i=1Bi is the total number of incorrectly rejected nulls.
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The Family-Wise Error Rate

• The FWER is given by:

FWER = Pr(B ≥ 1| all H0 true ) = Pr (∪m
i=1Bi | all H0 true )

≤
m∑
i=1

Pr(Bi | all H0 true )

= mα?

where α? is the level for each test.

• This is true regardless of whether the tests are independent or not.

• Bonferroni takes α? = α/m to give FWER ≤ α.

• Example: For control at α = 0.05 with m = 500K tests take
α? = 0.05/500, 000 = 10−7.

• Such stringent rules lead to a loss of power, but not ridiculous if you think
there is a reasonable chance that all nulls could be true (but α should
depend on n, in partcular should decrease as n gets larger and larger).
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Sidak Correction

• If all the tests are independent:

Pr(B ≥ 1) = 1− Pr(B = 0)

= 1− Pr(∩m
i=1B

′
i )

= 1−
m∏
i=1

Pr(B ′i )

= 1− (1− α?)m

• So to achieve FWER = α take α? = 1− (1− α)1/m — the Sidak
correction (Sidak, 1967).

• Example: with m = 500K tests take

α? = 1− (1− 0.05)1/500,000 = 1.03× 10−7.
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Expected Number of False Discoveries

• We describe an alternative criterion.

• For i = 1, ...,m tests let Bi again be the 1/0 random variable representing
whether the null was incorrectly rejected or not, so that B = ∪m

i=1Bi .

• The expected number of false discoveries (EFD), with significance level α
for each test, is given by

EFD = E [B] =
m∑
i=1

E [Bi ] = mα

if all nulls are true.
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Expected False Discoveries

For m0 true nulls: E [B] = m0α, but m0 is unknown, so all we can say is

EFD = E [B] ≤ mα.

• In a GWAS context suppose m = 500K and α = 0.05; this gives
EFD ≤ 25, 000, so conventional levels will clearly not work!

• We can easily put an upper bound on the EFD.

• For example, if we set α = 1/m the expected number of false discoveries
is bounded by 1.

• With α = 5/m the expected number of false discoveries is bounded by 5.

• Compare to Bonferroni which controls the FWER via α/m.
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False Discovery Rate

• A very popular criterion is the false discovery rate (FDR).

Non-Flagged Flagged
H0 A B m0

H1 C D m1

m − K K m

• Define the false discovery proportion (FDP) as the proportion of incorrect
rejections:

FDP =

{
B
K

if K > 0
0 if K = 0

• Then the false discovery rate (FDR), the expected proportion of rejected
nulls that are actually true nulls, is given by

FDR = E[FDP].
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False Discovery Rate

We describe an algorithm for controlling the FDR.

• Consider the following procedure for independent p-values:
1. Let P(1) < ... < P(m) denote the ordered p-values.

2. Define li = iα/m and R = max{i : P(i) < li} where α is the value at which
we would like FDR control.

3. Then define the p-value threshold as pT = P(R).
4. Reject all H0i for which Pi ≤ PT .

• Benjamini and Hochberg (1995) show that if this procedure is applied,
then regardless of how many nulls are true (m0) and regardless of the
distribution of the p-values when the null is false

FDR ≤ m0

m
α < α.
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False Discovery Rate

• If all the nulls are true then B = K (all rejections are false) and

FDR = E

[
B

K

]
= 1× Pr(B ≥ 1) = FWER.

• FDR in this form and with extensions, e.g. Storey and Tibshirani (2003)
(description of the q-value methodology) have been successfully used in
the microarrays field, where the number of non-null associations is not
small.

• Unfortunately less successful in a GWAS, because the proportion of nulls is
very close to 1.
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Simulated Example

• We illustrate control by the family-wide error rate (FWER), the expected
number of false discoveries (EFD) and the false discovery rate (FDR).

• We simulate data for m = 100 tests, with m1 = 5 being non-null.

• True table:

Non-Flagged Flagged
H0 A B 95
H1 C D 5

m − K K 100
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Simulated Example

• We begin by plotting, in Figure 2 the oberved p-values versus those
expected under the null, i.e. i/(m + 1) for i = 1, ...,m.

• Hard to interpret, so we truncate the scales in Figure 3.

• Finally we stretch the scale in Figure 4 to show − log10 the observed
p-values versus expected p-values.

• On this scale, a value of 2 corresponds to a p-value of 0.01, and a value of
3 corresponds to a p-value of 0.001.

• We see that the FWER is very conservative (p = 0.05/100 = 5× 10−4, or
− log10(p) = 3.30) and only flags one test as being significant.

• The EFD=1 gives a p-value threshold of 0.01, or − log10 p = 2 and picks
up all 5 signals.

• The FDR control at 5% gives the green diagonal line and rejects 3 tests.
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Figure 2 : Observed versus expected p-values.
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Figure 3 : Observed versus expected p-values with truncated scale.
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Bayesian False Discoveries/Non-Discoveries

• In a Bayesian approach, based on Bayes factors we have a rule to flag a
single association as noteworthy if:

Posterior Odds = Bayes Factor× Prior Odds

< R

where R is the ratio of costs of type II to type I errors.

• In a multiple testing situation in which m associations are being examined
nothing, in principle, changes.

• We simply apply the same rule m times, perhaps changing the priors if we
have different priors for different associations.

• The choice of threshold, R, and hence the procedure, does not depend on:
the number of tests being carried out2.

2unless the prior on the null, or the ratio of costs of errors depends on the number of tests
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Bayesian False Discoveries/Non-Discoveries

• As we have seen, the Bayes factor depends, crucially, on the sample size.

• In contrast, multiple testing based on p-values (e.g. Bonferroni/Sidak)
does not depend on the sample size but, crucially, on the number of tests
m.

• We have already noted that p-value calibration is very difficult, and we
would like a procedure by which p-value thresholds decrease to zero with
increasing sample size.

• The same would also be required of EFD or FDR based procedures.

• To summarize in the case of normal test statistics:

The Bayesian decision is based on the Z score and on the sample
size, n, but not on the number of tests, m.

• In contrast:

The Bonferroni decision is based on the Z score and on the number
of tests, m, but not on the sample size, n.
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Bayesian Multiple Testing

In a Bayesian context, for a single test:

• If we call a hypothesis noteworthy then Pr(H0| data ) is the probability of
a false discovery.

• If we call a hypothesis not rejected then Pr(H1| data ) is the probability of
a false non-discovery.

• In a multiple-hypothesis testing situation (and assuming ordered so the
first K are rejected), we have

Expected number of false discoveries =
K∑
i=1

Pr(H0i | datai )

Expected number of false non-discoveries =
m∑

i=K+1

Pr(H1i | datai ).

A Key Point: A Bayesian analysis of a single SNP alone, or the same SNP from
multiple SNPs will produce the same decision (assuming the prior is the same).
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Overall Treatment Effect

• We now describe the methodology for the VISP trial.

• Suppose we have two treatments T = 0/1 (e.g. low dose/high dose), a
continuous response Y and n/2 subjects in each treatment group, where n
is the number of trial participants.

• Let Yi be the response for the i-th individual and Ti the treatment
indicator.

• To estimate the overall treatment effect we fit the model

Yi = α + βTi + εi

with var(εi ) = σ2, so that β is the parameter of interest.

• H0 : β = 0 is the null of interest, i.e. no treatment effect?

• Test statistic:

Z =
β̂

s.e.(β̂)
∼ normal(0, 1) under H0

where β̂ = Y HI − Y LO and s.e.(β̂) = σ̂/
√
n.
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Treatment-by-Marker Interactions
• Now consider the situation in which we wish to examine the treatment

effect by marker.
• To be concrete, define the subgroups relative to a recessive model so that

at a generic SNP we have S = 0:

No Copies of the Minor Allele

and S = 1:
One or Two Copies of the Minor Allele.

• There are therefore m comparisons of interest, with summary data at
marker j , as below:

Marker
S = 0 S = 1 Sample Size

T = 0 Y 00 Y 01 n/2

T = 1 Y 10 Y 11 n/2

n − ns ns n

Table 1 : Summary data at a generic marker, under two treatments T = 0/1; there
are n individuals in total, of which ns possess the marker of interest.
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Treatment-by-Marker Interactions

• Let Si = 0/1 be a marker indicator for individual i and a generic SNP.

• For the treatment effect and at each marker we fit the model

Yi = α + βTi + γSi + ∆︸︷︷︸
Interaction

Ti × Si + εi

with var(εi ) = σ2.

• H0 : ∆ = ∆0 is the null of interest, i.e. is there a differential treatment
effect of a certain size at the SNP, e.g. ∆0 = 0, to compare to the
marginal treatment effect.

• Test statistic

Z =
∆̂−∆0

s.e.(∆̂)
∼ normal(0, 1) under H0.

• To emphasize, the same 833/837 responses are used in each of the m
comparisons, but they are distributed into the four treatment × marker
cells differently.

• Key Observation: The standard error will vary considerably across SNPs.
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VISP Example

• After data cleaning, there were m = 803, 122 SNPs on which data were
available, with at least 5 individuals in each treatment × marker subgroup.

• Suppose we are interested in detecting marker subgroups for which there is
an enhanced effect, i.e. an increased reduction over the marginal
treatment effect.

• Figure 5 shows the standard errors in the VISP trial – large variability and
so the power ranges considerably also.

• Now refresh memory on the Bayesian approach to testing.
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Computation of Bayes Factors

• Recall that

∆̂|∆ ∼ N(∆,V )

∆ ∼ N(∆0,W ).

where
√
V is the standard error of the estimator leads to a simple form for

the Bayes factor:

BF =

√
V + W

V
exp

(
−Z 2

2

W

V + W

)
where

Z =
∆̂−∆0√

V
.
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Bayesian Boundaries

• We again use the Bayes factors as a mechanism by which Z -score
boundaries can be calculated, as a function of the standard error

√
V .

• The Bayesian Z 2 score threshold is:

Z 2 > z2
B =

(
V + W

W

){
log

(
V + W

V

)
+ 2 log

(
PO

R

)}
to give a threshold which is an explicit function of V , R and PO.

• If the prior odds PO on the null increases, threshold increases: require
more evidence.

• If cost of Type II to Type I errors R increase, threshold decreases: require
less evidence.
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Bayesian Boundaries

• The Bayesian boundary:

Z 2 > z2
B =

(
V + W

W

){
log

(
V + W

V

)
+ 2 log

(
PO

R

)}
.

• Beyond a certain point, as V decreases the Type I error decreases to zero.

• Specifically, let n denote an appropriate measure of sample size and
V = σ2/n. Then, as n→∞,

z2
B → log

(
1 +

nW

σ2

)
︸ ︷︷ ︸

→∞

+2 log

(
PO

R

)
.

• Relative to a fixed boundary:
• For small n/large standard error the Bayesian approach requires more

evidence because of the low power.
• For large n/small standard error the Bayesian approach requires more

evidence because of the high power and the comparison with the
distribution under HA.
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Figure 5 : Histogram of standard errors of the interaction parameter estimates ∆̂ in
the VISP study.
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Figure 6 : Bayesian Z -score threshold as a function of the standard error. The
Bayesian threshold is based on a prior on the alternative of 0.0001, R = 1 and a prior
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interval on ∆ of (-10,10).
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A Priori Operating Characteristics

• Ranking is straightforward with Bayes factors, since the only choice is the
prior on the effect parameter (W ), and inference is relatively insensitive to
this value.

• There is much greater sensitivity to the ratio of costs R and the prior odds
PO.

• Deciding upon values for R and PO is not straightforward, but only the
ratio PO/R is needed.

• We assume R = 1 (equal costs of type I and type II errors) and
π1 = 0.001, 0.0001, 0.0001.

• For m = 803, 122 SNPs this corresponds to expecting 803, 80 and 8
non-null interactions, respectively.

• These signals will not reflect 803, 80, 8 different causal variants since
typically multiple SNPs will tag each causal variant.

• Figure 7 plots various useful operating characteristics.
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Operating Characteristics

• To determine the EFD and ETD we require specification of the number of
null and non-null signals, which we label as m0 and m1, respectively (so
that m = m0 + m1).

• We take the true number of signals as m1 = 50 so that there are
m0 = 803, 072 null signals.

• Then

EFD = m0 × α
ETD = m1 × (1− β)

where α and β are the type I and type II errors.

• We emphasize that in a GWAS in which the fraction of non-null
associations is close to zero, the ETD is highly sensitive to the choice of
m1 (in contrast to EFD, which is insensitive)
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Figure 7 : Operating characteristics of Bayes/Bonferroni. For Bayes boundaries R = 1
and “Bayes 1”, “Bayes 2”, “Bayes 3” correspond to priors of π1 = 0.001, 0001, 00001.
Power is to detect a drop of 5 units. For EFD/ETD we set m1 = 50.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Conclusions References

Operating Characteristics

• The most liberal prior of π1 = 0.001 produces a large number of type I
errors (around 20 for standard errors in the mid-range) and might be
judged to give unacceptably poor performance.

• The most sceptical prior is more conservative than Bonferroni (with a
FWER of 20%) and the prior with π1 = 0.0001 is a compromise for this
choice of m1.

• For example: For a standard error of 1, around 2 false discoveries would be
expected (as in the lower left panel) but with around 10 more true signals
being detected (as seen in the lower right panel), which seems a
reasonable trade-off.

• Note, however, that if we think the number of true signals is smaller than
m1 = 50 then the number of true signals will fall proportionally.

• For example: At a standard error of 1, if m1 = 5 then we would only
expect to detect a single additional signal, when compared to the use of
Bonferroni.

• Armed with this information we move to an analysis of the VISP data.
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Motivating Homocysteine Example

• We fitted the interaction model with adjustment for age and gender.

• The genetic subgroups are defined as having at least one copy of the
minor allele as compared to two copies of the major allele.

• The number in the former subgroup ranges between 21 and 1,564 across
SNPs.

• We choose W to give a 95% prior interval for the interactions ∆ of ±10.

• Figure 8 plots the Z -scores versus the standard error, along with boundary
corresponding to a FWER of 20%.

• For both the most conservative prior and the Bonferroni approach (with a
FWER of 20%, which gives a p-value threshold of 2.5× 10−7) two SNPs
are flagged.

• With a FWER of 5% the Bonferroni threshold is 6.2× 10−8 and results in
a single SNP being deemed significant.

• With the more optimistic prior of π1 = 0.0001, a further signal is flagged
(and these are not significant using Bonferroni).
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Figure 8 : Z -score threshold as a function of the standard error for the VISP data,
ratio of costs of type II to type I errors R = 1 and varying priors on the alternative of
π1 = 0.001, 0001, 00001 (to give Bayes 1, Bayes 2, Bayes 3 boundaries).
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Flagged Signals

SNP ID Chrom ∆̂ ŝ.e.(∆̂) p-value Bayes Factor Post Prob

rs3736238 17 -6.68 1.38 1.5× 10−8 9.3× 10−7 0.99
rs16893296 6 -4.61 0.85 7.1× 10−8 3.9× 10−6 0.96
rs1739317 6 -3.23 0.64 4.0× 10−7 2.3× 10−5 0.81

rs11819196 10 -1.72 0.37 3.5× 10−6 2.9× 10−4 0.26

Table 2 : The SNPs in the VISP study that had posterior probabilities on the
alternative of greater than 0.25 (R = 3), with a prior on the alternative of
π1 = 0.0001 and under the equal variances recessive genetic model.
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VISP Results

• Figure 9 plots the posterior probabilities of the alternative hypothesis
(with π1 = 0.0001) versus chromosomal position (this is similar to a
Manhattan plot in which − log10 p-values are plotted against position).

• The 3 SNPs that fall outside of the boundary in Figure 8 are highlighted.

• The strongest signal is for SNP rs3736238 on chromosome 17. For this
SNP there are 42 individuals in the M = 1 subgroup, of which 24 and 18
are in the low and high dose groups, respectively.

• The probability of this signal being a false discovery is 0.01 under our
assumed prior.
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Figure 9 : Posterior probability on the alternative plotted versus genomic position for
the VISP data. The prior on the alternative is π1 = 0.0001.
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VISP Example

• Figure 10 shows that the p-values and Bayes factors differ in their rankings
due to the differing sample sizes/standard errors.

• The points are color-coded by the size of the standard error and we see
that the points with larger standard errors are consistently ranked as
giving greater evidence for the alternative under the Bayesian approach.

• This behavior occurs here because of the association between the Z 2

boundary and the standard error for these priors, as shown in Figure 6.

• Specifically, the majority of the signals occur in that portion of the latter
curve in which the Bayes boundary lies below the FWER boundary.

• Figure 11 shows an example in which distinctly different behavior occurs.
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Figure 10 : -log10BFs vs -log10 p-values, color-coded by standard error with W = 10.
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Figure 11 : -log10BFs vs -log10 p-values, color-coded by standard error with W = 3.
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VISP Example

• A related interesting exercise is to simulate the distribution of observed
effect sizes under our assumed priors (on both the proportion of non-null
signals and the effect sizes), using the observed distribution of standard
errors.

• The distribution of effect sizes is N(∆,V + W ) for the non-null signals
and normal(0,V ) for the null signals.

• We can then evaluate the power, and hence determine the number of
signals we would expect to detect given our prior assumptions.

• For the VISP data, with a proportion of non-null signals π1 = 0.0001,
R= 1 and 95% range for the effect sizes of ±10, we would expect to see
52 true positives and one false positive.

• Given we only observed three non-null signals, this implies that either the
range of effect sizes (as defined through W ) was too wide or, more
probably, that our estimate of π1 was optimistic.

• Repeating this exercise with π1 = 0.00001 gives 5 true positives and close
to 0 false positives, which is more consistent with that which was observed.

• Figure 12 gives the posterior probabilities for this prior.



Introduction Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Conclusions References

Figure 12 : Posterior probability on the alternative plotted versus genomic region for
the VISP data. The prior on the alternative is the more conservative choice of
π1 = 0.00001.
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VISP Discussion

• We chose the value π1 = 0.0001 by examining frequentist summaries
before the real data analysis was performed.

• We define π1 as the proportion of SNPs that would be associated with the
disease, if the power were 1.

• After the data are analyzed we can, for those SNPs declared as null (i.e. all
but 3 SNPs in the VISP trial), sum up the posterior probabilities of being
non-null, and this gives the expected number of false non-discoveries .

• For the VISP data, this expected number is 24.6 so that we are missing a
large number of signals, with lack of power being a major issue.

• For the three significant signals, at the 0.5 threshold, the probabilities of
the null being true are 0.01, 0.04 and 0.19, so that the expected number
of false discoveries is 0.24.

• Taking the threshold of significance as 0.25 gives an additional SNP as
being declared significant.

• The sum of the posterior probabilities of the null is 0.98 in this case and
so, under this prior, we would expect one of the reports signals to be a
false discovery.
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Sensitivity to π1

• The posterior probability of the alternative is highly dependent on the
choice of prior on the null π0, and a sensitivity analysis is always warranted.

• Ideally, rather than fix π0 as we have done, one would estimate of π0 from
the totality of data (i.e. over all m SNPs), but this is difficult because in a
GWAS the proportion of detectable null signals is typically very close to 1;
there may be many thousands of small but non-zero effects, but the power
to detect these signals is low, with the usual sample sizes.

• In other contexts, such as the analysis of gene expression data (Storey and
Tibshirani, 2003), the data can be used to estimate π0 more reliably.

• If the same prior on the null is used for all the tests, the rankings based on
the Bayes factor will remain the same as the ranking based on posterior
probabilities.

• However, calibrating the Bayes factors to the probability scale requires
prior probabilities.

• Within a sensitivity exercise one may include an analysis in which any
available information on particular SNPs may be included.
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An Alternative Approach to Significance

• The posterior probability (and the Z -score threshold) is equally sensitive to
R as to π1.

• The form of the latter suggests that all we need to do is to fix PO/R.

• As mentioned above, in the VISP analysis we selected π1 by examining the
frequentist operating characteristics.

• An alternative method (Wakefield, 2012) for obtaining PO/R is to specify
a value for the Z 2 boundary, z2

B , at a particular V (for example, at a MAF
and sample size that one is familiar with) and then solve for
U = log(PO/R) via

Û =
z2

B ×W

2(V + W )
− 1

2
log

(
V + W

V

)
.

• With this value of Û = PO/R one can then proceed to use

Z 2 > z2
B =

(
V + W

W

){
log

(
V + W

V

)
+ 2 log(Û)

}
across the observed range of standard errors.
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Conclusions

• Bayesian analysis is attractive in a multiple testing context, but the results
are very sensitive to the prior on the proportion of nulls, π0.

• Fast methods are required for large m (e.g. in a GWAS context) of tests,
which is still a drawback for many Bayesian approaches.

• Priors can be made a function of characteristics of the SNP
(e.g. non-synonymous, previously implicated,...). See Johansson et al.
(2012) for an example.

• Such priors can have a major impact on rankings and posterior
probabilities.

• In genetics, journals are sympathetic to Bayes analyses (not true in all
disciplines).

• A huge GWAS enterprise used p-values and Bayes factors to assess
significance (Wellcome Trust Case Control Consortium, 2007).

• Stephens and Balding (2009) provide a review of Bayesian approaches in
GWAS.
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Overview

Rather than

trying to cram

another book’s-

worth of material

into a single

session...

• Testing — what we do and what it (may) mean

• Multiple testing — primarily for high-throughput settings

NB Testing is the statistical area with most divergence between

default Bayesian and non-Bayesian methods — and the founda-

tions of both are contentious — so this focus in this session is

more statistical than usual.
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Testing

Typical motivation; is the SNP variant (G) associated with
phenotype (Y , e.g. height)?

• Is the association positive? negative? zero?
• Is the variant causal – or just associated via LD?
• Given what You know, is the association worth mentioning?

2



Testing

To answer whether an association is “worth mentioning”, this

term must be defined — and there are many ways we could

measure worth;

• Strong enough belief that θ is positive to outweigh saying it’s

negative

• Strong enough belief about θ’s direction to outweigh saying

nothing about direction

• Strong enough belief that θ is non-zero to outweigh saying

that it’s zero

• Strong enough belief (based on the data, and relevant to the

prior) that θ is non-zero to outweigh saying that it’s zero

• Strong enough belief about θ’s distance from zero to

outweigh saying nothing about its value

These can all give different answers, depending on the details –

and the data.
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Testing: decision theory

We introduce some concepts from Bayesian decision theory ;

• Loss function L(θ, d): how bad it would be if the truth

were θ but you took decision d. (Optimists: note we could

equivalently define Utility as −L(θ, d) — how good it would

be)

• Expected posterior loss E[L(θ, d) ] – loss for some decision d

averaged over posterior uncertainty

Theory (and intuition) states that Your best decision – the Bayes

rule — is the decision d that minimizes E[L(θ, d) ].

For testing, d is 0 or 1, so this means checking whether

E[L(θ, d = 0) ] ≤ E[L(θ, d = 1) ].
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Testing: first example

A first example: assessing whether a variant is harmful – it has

θ > 0 – suppose we either state (d = 1) that it is or say nothing

at all (d = 0) about θ;

0

0
α

1

True θ

Lo
ss

d=1: say it's harmful
d=0: say nothing

• L(θ, d = 1) = 1 if θ ≤ 0, i.e. large cost for getting it wrong

• L(θ, d = 1) = 0 if θ > 0, i.e. no cost for getting it right

• L(θ, d = 0) = α: small cost of saying nothing, regardless of

the true value of θ
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Testing: first example

Averaging over a green posterior;

0

0
α

1

True θ

Lo
ss

d=1
d=0

The expected posterior loss is

E[L(θ, d) ] =

{
α, d = 0

P[ θ < 0|Y ], d = 1
,

... so the Bayes rule sets d = 1 if P[ θ < 0|Y ] < α here.
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Testing: first example

At a higher α, its ‘easier’ to get d = 1;

0

0

α

1

True θ

Lo
ss

d=1
d=0

If more than α of the posterior is in the tail below zero, the Bayes

rule is to say nothing, i.e. return d = 0.
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Testing: first example revisited

Now suppose we assess the sign of the variant’s effect; and let

d = 1 decide θ > 0, and d = 0 for θ ≤ 0?

Truth
θ ≤ 0 θ > 0

Decision d = 0 0 α
d = 1 1− α 0

• No cost for getting the answer right (a proper loss function)

• Small penalty for incorrectly saying θ > 0

• Large penalty for incorrectly saying θ ≤ 0
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Testing: first example revisited

As a picture;

0

0
α

1 − α
1

True θ

Lo
ss

d=1
d=0

And working out the posterior loss;

E[L(θ, d) ] =

{
αP[ θ > 0|Y ], d = 0

(1− α)P[ θ < 0|Y ], d = 1
,

... so – again! – the Bayes rule sets d = 1 if P[ θ < 0|Y ] < α.
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Testing

Some notes so far;

• These are one-sided tests, of the null hypothesis that θ < 0

• “Reject the null vs say nothing” is a significance test

• “Reject the null vs accept the null” is a hypothesis test

• The test have different decisions, even though both just look

at whether tail area < α.

• This is also true for one-sided frequentist significance/hypothesis

tests – in which p-values are approximately our tail areas, in

large samples, if likelihood dominates prior

• Not (yet!) making decisions that θ is exactly zero, or any

other specific value... so don’t conclude this without more

assumptions
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Testing

XKCD on loss functions;

11
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Testing: doing two tests at once

Back to the significance test, i.e. say something vs nothing –

but now let’s do two one-sided tests, that decide if θ is Above

0 or Below 0;

Decision Truth Loss
dA 0 αA

1 θ > 0 0
1 θ ≤ 0 1

dB 0 αB
1 θ < 0 0
1 θ ≥ 0 1

... where we get L(d, θ) by adding the two components.
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Testing: doing two tests at once

As a picture – dA as dashed lines, dB as dotted;

0

0

αA

αB

1

True θ

C
om

po
ne

nt
 o

f l
os

s

dA=1
dA=0

dB=1
dB=0

Here are the possible overall posterior losses;

dB = 0 dB = 1
dA = 0 αA + αB αA + P[ θ > 0 ]
dA = 1 αB + P[ θ < 0 ] P[ θ < 0 ] + P[ θ > 0 ] = 1
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Testing: doing two tests at once

Which option is best?

dB = 0 dB = 1
dA = 0 αA + αB αA + P[ θ > 0 ]
dA = 1 αB + P[ θ < 0 ] 1

• Assuming αA+αB < 1, we never choose d = (dA, dB) = (1,1)

• If P[ θ < 0 ] < αA, then (1,0) beats (0,0). And because

P[ θ < 0 ] > 1− αA it also beats (0,1) ⇒ choose d = (1,0)

• If P[ θ > 0 ] < αB, then (0,1) beats (0,0). And because

P[ θ < 0 ] > 1− αB it also beats (1,0) ⇒ choose d = (0,1)

• If P[ θ < 0 ] > αA and P[ θ > 0 ] > αB, αA + αB is the best

option, ⇒ choose d = (0,0)

... so we ‘say nothing’ unless at least one tail is small. When one

tail is small, the Bayes rule gives the corresponding statement

about the sign of θ.
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Testing: doing two tests at once

Overall loss functions for the three decisions we consider;

0

0

αA + αB

1

True θ

O
ve

ra
ll 

lo
ss

d=(0,0)
d=(1,0)
d=(0,1)

To keep the ratio of costs for ‘say nothing’ versus ‘say something’

the same α : 1 ratio as in the one-sided test, we need to put

αA + αB = α. One obvious way to do this is setting αA = αB =

α/2 – known as using equal tails.
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Testing: doing two tests at once

More notes:

• This is a Bayesian analog of a standard two-sided frequentist

test. In large samples, they will give the same reject/don’t

reject decisions (with non-spiky priors)

• For two-sided tests, using anything except equal tails is

unusual, in Bayesian or frequentist work

• Still not declaring that θ = 0!

• Modifications of much the same argument can cope with

multivariate θθθ – where d = 1 trades off error in estimates of

θθθ versus inaccuracy saying (d = 0) that θθθ = 0. But the result

is equivalent to checking p < α.

• Here, α interpreted as how much You value saying nothing

vs saying something – which is highly context-specific, but a

lot easier than frequentist arguments...
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Testing: frequentist tests

Recall our frequentist archer, from Session 1;

Adapted from Gonick & Smith, The Cartoon Guide to Statistics
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Testing: frequentist tests

Let’s do some more ‘target practice’, for frequentist testing;
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Testing: frequentist tests

Let’s do some more ‘target practice’, for frequentist testing;
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Testing: frequentist tests

Let’s do some more ‘target practice’, for frequentist testing;
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Testing: frequentist tests

Performing the test means assessing whether our data beats

some pre-specified measure of extremity;

Replications (infinitely many, and under the null)

50 100 150
Your data

(truth unknown)

T
(Y

)
c

... where the threshold c is chosen so that, under the null, a

fixed proportion α of datasets would be that extreme.
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Testing: frequentist tests

For any measure T (Y ), we can also obtain the p-value the

proportion of datasets we might observe at least as extreme

as that observed, under the null;

Replications (infinitely many, and under the null)

50 100 150Your data

T
(Y

)

Replications (infinitely many, and under the null)

p(
Y

)

50 100 150
Your data

(truth unknown)

0
1

... and then directly assess whether p < α.
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Testing: frequentist tests

• Frequentist testing is convoluted; at minimum, it requires

comparison against many hypothetical replications

• Which test statistic to use is subjective; good choices can

optimize power∗ for given Type I error rate α, but these may

not be known

• One silly no-data example: throw a 20-sided dice and if you

get 20 reject

• In practice – in genetics and elsewhere – controlling Type I

error rates is a heavy focus, and power comes second

* NB power = probability of seeing a significant result, given that one is

present
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Testing: losses featuring the prior

We’ve considered only the sign of θ – giving no posterior to prior
comparison. To fix this, we introduce θ∗, a parameter with the
same prior as θ, but which is not updated by the data.

A loss examining how the signs of θ and θ∗ compare;

θ∗ < 0 θ∗ > 0
θ < 0 θ > 0 θ < 0 θ > 0

d = 0 lN 1 0 lP
d = 1 lN 0 B0 lP

• If signs agree, d doesn’t matter
• No penalty for d = 1 if θ∗ < θ, or for d = 0 if θ∗ > θ
• Small penalty (1) if d = 0 but θ∗ < θ
• Large penalty (B0) if d = 1 but θ∗ > θ
• Bayes rule returns d = 1 if

B0P[ θ∗ > 0 ]P[ θ < 0|Y ] < P[ θ∗ < 0 ]P[ θ > 0|Y ],

i.e.
P[ θ > 0|Y ]

1− P[ θ > 0|Y ]
> B0

P[ θ∗ > 0 ]

1− P[ θ∗ > 0 ]
.
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Testing: losses featuring the prior

Notes:

• This form of loss returns d = 1 if the posterior odds of

positive θ, i.e. P[ θ>0|Y ]
1−P[ θ>0|Y ] are more than B0 times bigger

than the prior odds of positive θ∗

• The ratio of the odds is known as the Bayes factor – usually

denoted B. It does not depend on the prior support for θ∗ > 0

• We have compared sign (θ > 0 and θ < 0) but any two sets

would do, e.g. θ = 0 and θ 6= 0.

T-shirt sizes for Bayes Factors > 1; (Kass & Raftery 1995)

B Evidential meaning
1 to 3 not worth more than a bare mention

3 to 20 positive
20 to 150 strong
>150 very strong
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http://www.jstor.org/stable/2291091


Multiple testing

From one test to many;

Just finding “hits” is okay, as no-one will understand a “big”-
dimensional posterior, and exact size of association (beyond
positive/negative) doesn’t matter.
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Multiple testing

But big data has not always been covered in statistical glory;

Bennett et al exposed a salmon to two different stimuli,
measuring brain activity in 8064 voxels. Standard methods show
16 differential-response ‘hits’. Any problems?
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http://www.wired.com/2009/09/fmrisalmon/


Multiple testing: background

...resulting in skepticism (and panic-inducing gobbledygook)

28



Multiple testing: background

And yes, XKCD knows about it;

29

https://www.xkcd.com/882/


Multiple testing: background

What statisticians should do with more than one test is an old
problem;

The topic of multiple comparisons is sorely in need of
clarification ... we do not really understand what its purpose is
... The statistical literature is full of [multiple testing] methods
and techniques but quite devoid of a basic rationale and clearly
stated purpose, and there still are many who doubt if the topic

has any relevance at all.

K Ruben Gabriel, JASA 73:363 1978

In my view multiple comparison methods have no place at all in
the interpretation of data.

John Nelder, JRSSB, 1971 33, 244–246
Re-iterated (!) in JRSSD, 1999 48, 257–269
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http://www.jstor.org/stable/2286585
http://www.jstor.org/stable/2985004?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2681191


Multiple testing: background

Another old-timer, in olden-times;

The theoretical basis for advocating routine adjustment for
multiple comparisons is the ‘universal null hypothesis’ that
‘chance’ serves as the first-order explanation for observed

phenomena. This hypothesis undermines the basic premises of
empirical research, which holds that nature follows regular laws

that may be studied through observations ... Furthermore,
scientists should not be so reluctant to explore leads that may
turn out to be wrong that they penalize themselves by missing

possibly important findings.

Ken Rothman
No adjustments are needed for multiple comparisons

Epidemiology 1990, 1:43–6

But with no penalty for leads being wrong, logically we have to
investigate everything. In highly-restricted settings one can do
this – e.g. small factorial designs – but that’s all.
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http://journals.lww.com/epidem/Abstract/1990/01000/No_Adjustments_Are_Needed_for_Multiple.10.aspx


Multiple testing: background

Genetic epidemiology to the rescue!

The emergence of genetic epidemiology, with its staggering
number of associations to explore, has brought

multiple-inference concepts into the mainstream of
epidemiology and biostatistics.

It is thus time to recognize of the extent of multiple
comparison problems in everyday epidemiology and deploy

modern methods toward their resolution.

Sander Greenland (discussing Jon’s work)
International Journal of Epidemiology 2008;37:430–434

Rothman & Greenland are co-editors of a very popular Epi-
demiology textbook. In the latest edition (2008) Rothman has
considerably moderated his earlier views.
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http://ije.oxfordjournals.org/content/37/3/430.full


Multiple testing: many decisions

Back to deciding the sign of a single θ;

0

0

α

1

True θ

Lo
ss

d=(1,0): say it's +ve
d=(0,1): say it's −ve
d=(0,0): say nothing

Written in terms of indicator functions, this is

L(θ, d) = α1{say nothing}+ 1{say something, wrong sign},

which emphasises α is a tradeoff rate; how much cheaper is it

to say nothing than to get the wrong sign?
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Multiple testing: many decisions

Just as we combining two one-sided tests, for testing m multiple

parameters θi, we can add the loss functions;

L(θθθ,d) =
m∑
i

L(θi, di) =
m∑
i=1

αi1{say nothing about θi}

+
m∑
i=1

1{say something, wrong sign for θi}.

But what αi to use? Again following two-sided tests, suppose we

want to have a ratio of at least α between the loss saying nothing

about any θi, and the loss making m decisions but getting some

wrong. To do this, we need to consider

Decision Loss Situation
d = (0,0, ...,0)

∑m
i=1αi Say nothing about any θi

d = (1,1, ...,1) 1 Get wrong sign for one θi

... and we see using
∑m
i=1αi = α gives this α : 1 ratio.

34



Multiple testing: many decisions

Or, if you prefer, just have loss function

L(θθθ,d) = αProp(non-decisions, out of m) + #{wrong signs}
= α/m#{non-decisions}+ #{wrong signs}

=
m∑
i=1

αi1{say nothing about θi}

+
m∑
i=1

1{say something, wrong sign for θi},

if we use αi = α/m.

• This is a conservative criterion – trading off an average

against a sum

• Frequentist version of using αi = α/m is Bonferroni correc-

tion (see Session 3) which controls Family-wise Error Rate

at level α (more later)

• Using loss functions, Bonferroni is exactly the right answer
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Summary so far

• Multiple testing corrections are not unBayesian. But state

carefully what they mean, and why they are used

• Does L(θ, d) reflect Your loss? Maybe not, if each additional

sign error is not equally bad...

• Faced with many studies on many phenotypes, frequentist

ideas may help pick an α level
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