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Model selection and averaging

Diabetes example:

� 342 subjects

� yi = diabetes progression

� xi = explanatory variables.

Each xi includes

� 13 subject specific measurements (xage, xsex, . . .);

� 78 =
(

13
2

)
interaction terms (xage · xsex, . . .) ;

� 9 quadratic terms (xsex and three genetic variables are binary)

100 explanatory variables total!
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OLS regression
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Backwards elimination

1. Obtain the estimator β̂ols = (XTX)−1XTy and its t-statistics.

2. If there are any regressors j such that |tj | < tcutoff ,
2.1 find the regressor jmin having the smallest value of |tj | and remove column

jmin from X.
2.2 return to step 1.

3. If |tj | > tcutoff for all variables j remaining in the model, then stop.
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Backwards elimination
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Spurious associations

Now try modeling permuted yπ(i) = βTxi + εi (and backwards-select)
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Spurious associations

Now try modeling permuted yπ(i) = βTxi + εi
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Spurious associations

sum(abs(t.bslperm)>2 )

## [1] 21

sum(abs(t.bslperm)>3 )

## [1] 12

sum(abs(t.bslperm)>4 )

## [1] 5

� 21 regressors have t-stats > 2 (p ≈ 0.05)

� 12 regressors have t-stats > 3 (p ≈ 0.003)

� 5 regressors have t-stats > 4 (p ≈ 0.00006)

Often want some way to pick a sparse model – but this approach is not smart
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Bayesian model selection

Prior belief: βj ≈ 0 for many j ’s.

Formulation: Write βj = zj × bj , where zj ∈ {0, 1} and bj ∈ R.

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi .

For example, in the FTO experiment,

E[Y |x, b, z = (1, 0, 1, 0)] = b1x1 + b3x3

= b1 + b3 × age

E[Y |x, b, z = (1, 1, 0, 0)] = b1x1 + b2x2

= b1 + b2 × group

E[Y |x, b, z = (1, 1, 1, 0)] = b1x1 + b2x2 + b3x3

= b1 + b2 × group + b3 × age.

Can think of each value of z = (z1, . . . , zp) representing a different model.
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Bayesian model selection

Or, think of zj as unknown components in one (big) model – written informally
as;

zj
iid∼ Bern(0.5)

bj ∼ p(bj)

εi
iid∼ N(0, σ2)

σ2 ∼ p(σ2)

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi

Each of the 2p possible values of of z has a posterior probability. (In the prior
we treat them as a ‘coin toss’, equally likely to be ‘in’ or ‘out’.)
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Bayesian model comparison

Posterior probability

p(z|y,X) =
p(z)p(y|X, z)

p(y|X)

Model comparison

p(za|y,X)

p(zb|y,X)
=

p(za)

p(zb)
× p(y|X, za)

p(y|X, zb)

posterior odds = prior odds × “Bayes factor”

Note that the Bayes Factor (BF) does not depend on the prior for z – so the
‘coin toss’ prior is not crucial for this approach.
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Parsimony

The formula for p(y|X, z) is messy, but

p(y|X, za)

p(y|X, zb)
= (1 + n)(pzb−pza )/2

(
s2
za

s2
zb

)1/2

×

(
s2
zb + SSRzb

g

s2
za + SSRza

g

)(n+1)/2

.

A model za is penalized if;

� it is too complex (nuber of covariates pA is large)

� it doesn’t fit well (SSRa
g is large)
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FTO example

E[Yi |β, xi ] = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4
= β1 + β2 × grpi + β3 × agei + β4 × grpi × agei .

effect of group ⇔ one of more of β2, β4 not zero

z model log p(y|X, z) p(z|y,X)
(1,0,0,0) β1 −71.82 0
(1,1,0,0) β1 + β2 × grpi −70.04 0
(1,0,1,0) β1 + β3 × agei −67.04 0
(1,1,1,0) β1 + β2 × grpi + β3 × agei −61.19 0.63
(1,1,1,1) β1 + β2 × grpi + β3 × agei + β4 × grpi × agei −61.72 0.37

Pr(β2 or β4 6= 0) = 0.60

Pr(β2 or β4 6= 0|y,X) ≈ 1
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High dimensional regression

Diabetes example: p = 100⇒ 2100 ≈ 1030 models to consider.

We can’t compute p(z|y,X) for each z. Instead, we hope to

� search for models z with high posterior probability;

� approximate βj = zj × bj for each j ;

� build a predictive model for y.

This can be achieved via a Monte Carlo method known as Gibbs sampling.
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The Gibbs sampler

Goal: A Monte Carlo approximation to p(x , y , z)

Given {x (s), y (s), z (s)},
1. simulate x (s+1) ∼ p(x |y (s), z (s)),

2. simulate y (s+1) ∼ p(y |x (s+1), z (s)),

3. simulate z (s+1) ∼ p(z |x s+1), y (s+1)) .

This generates {x (s+1), y (s+1), z (s+1)} – and then ‘go round’ again, many times.
Repeated many times, this generates {x (1), y (1), z (1)}, . . . , {x (S), y (S), z (S)}



Model selection Stochastic search

The Gibbs sampler
For a couple of two-dimensional examples;
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The Gibbs sampler
Output from a short sampler;
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The Gibbs sampler

Repeated many times, this generates {x (1), y (1), z (1)}, . . . , {x (S), y (S), z (S)}

The distribution of this sequence approximates p(x , y , z):

1

S

∑
x (s) ≈ E[x ] =

∫
x p(x , y , z) dx dy dz

#(x (s) ∈ A)

S
≈ Pr(x ∈ A) =

∫ ∫ ∫
A

p(x , y , z) dx dy dz

#({x (s), y (s), z (s)} ∈ B)

S
≈

∫ ∫ ∫
B

p(x , y , z) dx dy dz

By necessity, the sequence will frequently visit regions where p(x , y , z) is large.



Model selection Stochastic search

Gibbs sampling for model selection

Goal Approximate p(z1, . . . , zp|y,X).

Gibbs sampler: Given z(s) = (z
(s)
1 , . . . , z

(s)
p ),

z
(s+1)
1 ∼ p(z1|z (s)

2 , . . . , z (s)
p , y,X)

z
(s+1)
2 ∼ p(z2|z (s+1)

1 , z
(s)
3 , . . . , z (s)

p , y,X)

...

z (s+1)
p ∼ p(zp|z (s+1)

1 , . . . , z
(s+1)
p−1 , y,X)

This generates z(s+1) from z(s).

Repeating this generates z (1), . . . , z (S) with which to approximate p(z|y,X).
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Diabetes example
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Marginal inference
What is the estimate of β?

Recall
β = (β1, . . . , βp) = (b1z1, . . . , bp, zp)

Our Monte Carlo samples are

β(1) = (0 −.299 0 .427 · · · .845)

β(2) = (0 −.235 .834 .374 · · · 0)
...

...

β(S) = (0 −.315 0 .536 · · · 0)

A posterior mean for β is obtained in the usual way:

β̂
bayes

=
1

S

∑
β(s) ≈ E[β|y,X]

Out of sample predictions can be made with β̂bayes:

ŷbayes
test,i = β̂

T

bayesxtest,i

Out of sample prediction error:
1

S

∑
(ytest,i − ŷbayes

test,i )2 = 0.4852529
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Marginal inference
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Important variables

colnames(X)[ order(z.pmean,decreasing=TRUE)[1:10] ]

## [1] "bmi" "ltg" "g2" "map" "tc" "sex.age" "sex"
## [8] "ldl" "ltg.age" "tch"

colnames(X)[ order(b.pmean,decreasing=TRUE)[1:10] ]

## [1] "ltg" "bmi" "ldl" "map" "sex.age" "hdl" "ltg.age"
## [8] "tch" "glu.bmi" "map.sex"
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Other approaches, briefly

Model-averaging in this way gives an honest statement of uncertainty. But;

� Not all variables are in the model for the same reason – may want to
‘force’ some covariates into the model

� When selecting a single, parsimonious model, may want to maximize its
ability to predict – not its probability of being true
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Confounding

‘Confounding’ means not being able to distinguish between a signal of interest,
and some other cause. Here’s a genetic ‘signal’;

G

Y

AA Aa aa
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Confounding

...which can be explained by ancestry, i.e. is confounded by ancestry

G

Y

AA Aa aa

However, analysis that adjusts for ancestry would be of interest – even if
models without it are better-supported.
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Confounding

Directed Acyclic Graphs (DAGs) are a general language for confounding;

Arrows indicate causal relationships; confounding means ‘backdoor paths’ exist;
these can be removed by adjustment for confounders. In genetic association
work, typically ancestry is the only plausible confounder - expression and
methlyation work is more complex.
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Confounding

Bayesian Adjustment for Confounding (BAC, Wang et al 2012) specifies a
model with

1. Dependence of outcome on the exposure and the set of confounders

2. Dependence of exposure on the set of confounders

3. Dependence between these models, making variable inclusion in (1) more
likely if it is included in (2)

So BAC fits two set of z indicators, and links them. Modeling exposures is
unusual – doing it well takes careful work.

The method is implemented in BEAU, a stand-alone R package, using
approximate calculations for the posterior.

http://www.ncbi.nlm.nih.gov/pubmed/22364439
http://sweb.uky.edu/~cwa236/BEAU/
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Prediction

Understanding causes (and confounding) is often very important – but ability
to predict can matter too;

� Remaining lifetime

� Drug response

� Telling ‘good’ genotyping from ‘bad’

To pick a model here, it’s reasonable to ask how well it would predict in
similarly-collected data. This choice may not be the same as asking what the
causes are, e.g. TV ownership rates predict child mortality but are not a cause.
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Cross-validation

A natural way to assess how well a fitted model predicts is to fit it, and predict!

SSR is a common measure of predictive accuracy
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Cross-validation

1. SSR (squared error loss) is not the only option – need to consider the loss
(utility) of particular predictions

2. For categorical outcomes, could also weight misclassification rates (e.g.
P(1|0) and P(0|1)) – some mistakes may be worse than others

3. Trickier still for dependent outcomes

4. 10-fold cross-validation is typical

5. Fitting multiple models with Gibbs sampling, and cross-validating each can
be too slow
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Approximate prediction measures

The standard ‘score’ is log posterior predictive density

log pppost(y) = log

∫
p(y |θ)p(θ|y)obsdθ).

Expected out-of-sample accuracy (over new datasets ỹ) is defined as

elpd = E(log pppost(ỹ)) =

∫
log pppost(ỹ)q(ỹ)dỹ

for true density q(ỹ). A natural way to estimate this is through the ‘in sample
accuracy’,

lpd = log

∫
p(yobs|θ)p(θ|y)obsdθ,

but its double-use of the posterior leads to bias – worse with more parameters.
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Approximate prediction measures

� Akaike’s Information Criterion (AIC) approximates lpd by log p(yobs|θ̂MLE )
– so is not Bayesian, and adds bias-correction k, the number of parameters

� Deviance Information Criterion (DIC) approximates lpd by
log p(yobs|E(θ|yobs)) and adds the effective number of parameters,

pD = 2(log p(yobs|E(θ|yobs))− Eθ[log p(yobs|θ)])

For either, in large samples – and under some conditions – choosing the model
with the lowest value is equivalent to doing cross-validation.

NB Several other versions are available; AIC, DIC2, WAIC...
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DIC examples

� Shriner and Yi 2009 use DIC in the context of multiple QTL Mapping – to
select how many QTLs there are, and their locations

� Yu et al, 2012 use DIC studying gene×environment interactions, with a
model that ‘clusters’ nearby∗ variants, so they have similar interaction
effects. DIC is used to choose how many clusters

* ...using the Potts model

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682718/
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002482
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