Module 22: Bayesian Methods Lectures 6: Model selection and averaging

Ken Rice

Department of Biostatistics University of Washington

Outline

Model selection

Stochastic search

Model selection and averaging

Diabetes example:

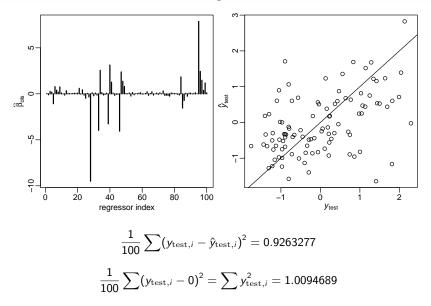
- 342 subjects
- $y_i = \text{diabetes progression}$
- **x**_i = explanatory variables.

Each \mathbf{x}_i includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- 78 = $\binom{13}{2}$ interaction terms $(x_{\text{age}} \cdot x_{\text{sex}}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

100 explanatory variables total!

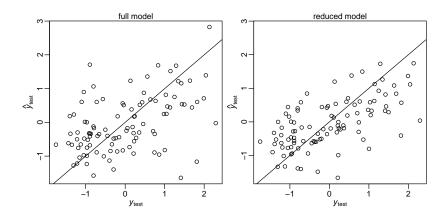
OLS regression



Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{
 m cutoff}$,
 - 2.1 find the regressor j_{\min} having the smallest value of $|t_j|$ and remove column j_{\min} from **X**.
 - 2.2 return to step 1.
- 3. If $|t_j| > t_{\text{cutoff}}$ for all variables *j* remaining in the model, then stop.

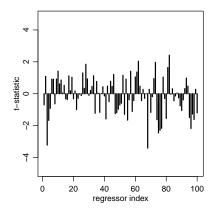
Backwards elimination



$$\frac{1}{100}\sum(y_{\text{test},i} - \hat{y}_{\text{test}^{bel},i})^2 = 0.6392334$$

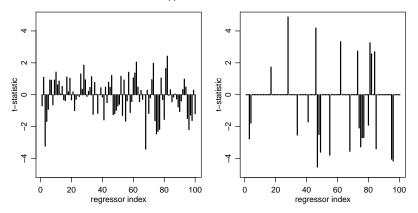
Spurious associations

Now try modeling permuted $y_{\pi(i)} = \boldsymbol{\beta}^T \mathbf{x}_i + \epsilon_i$ (and backwards-select)



Spurious associations

Now try modeling permuted $y_{\pi(i)} = \boldsymbol{\beta}^T \mathbf{x}_i + \epsilon_i$



Spurious associations

```
sum(abs(t.bslperm)>2 )
```

```
## [1] 21
```

```
sum(abs(t.bslperm)>3 )
```

```
## [1] 12
```

```
sum(abs(t.bslperm)>4 )
```

[1] 5

- 21 regressors have *t*-stats > 2 ($p \approx 0.05$)
- 12 regressors have t-stats > 3 ($p \approx 0.003$)
- 5 regressors have t-stats > 4 ($p \approx 0.00006$)

Often want some way to pick a sparse model - but this approach is not smart

Bayesian model selection

Prior belief: $\beta_j \approx 0$ for many *j*'s.

Formulation: Write $\beta_j = z_j \times b_j$, where $z_j \in \{0, 1\}$ and $b_j \in \mathbb{R}$.

$$y_i = z_1 b_1 x_{i,1} + \cdots + z_p b_p x_{i,p} + \epsilon_i.$$

For example, in the FTO experiment,

$$E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z} = (1, 0, 1, 0)] = b_1 x_1 + b_3 x_3$$

= $b_1 + b_3 \times \text{age}$
$$E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z} = (1, 1, 0, 0)] = b_1 x_1 + b_2 x_2$$

= $b_1 + b_2 \times \text{group}$
$$E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z} = (1, 1, 1, 0)] = b_1 x_1 + b_2 x_2 + b_3 x_3$$

= $b_1 + b_2 \times \text{group} + b_3 \times \text{age}.$

Can think of each value of $\mathbf{z} = (z_1, \ldots, z_p)$ representing a *different model*.

Bayesian model selection

Or, think of z_j as unknown components in one (big) model – written informally as;

$$\begin{array}{lll} z_j & \stackrel{\mathrm{iid}}{\sim} & Bern(0.5) \\ b_j & \sim & p(b_j) \\ \epsilon_i & \stackrel{\mathrm{iid}}{\sim} & N(0,\sigma^2) \\ \sigma^2 & \sim & p(\sigma^2) \\ y_i & = & z_1 b_1 x_{i,1} + \dots + z_p b_p x_{i,p} + \epsilon_i \end{array}$$

Each of the 2^{p} possible values of of z has a posterior probability. (In the prior we treat them as a 'coin toss', equally likely to be 'in' or 'out'.)

Bayesian model comparison

Posterior probability

$$p(\mathsf{z}|\mathsf{y},\mathsf{X}) = rac{p(\mathsf{z})p(\mathsf{y}|\mathsf{X},\mathsf{z})}{p(\mathsf{y}|\mathsf{X})}$$

Model comparison

$$\frac{p(\mathbf{z}_a|\mathbf{y}, \mathbf{X})}{p(\mathbf{z}_b|\mathbf{y}, \mathbf{X})} = \frac{p(\mathbf{z}_a)}{p(\mathbf{z}_b)} \times \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{z}_a)}{p(\mathbf{y}|\mathbf{X}, \mathbf{z}_b)}$$
posterior odds = prior odds × "Bayes factor"

Note that the Bayes Factor (BF) does not depend on the prior for z – so the 'coin toss' prior is not crucial for this approach.

٠

Parsimony

The formula for $p(\mathbf{y}|\mathbf{X}, \mathbf{z})$ is messy, but

$$\frac{p(\mathbf{y}|\mathbf{X}, \mathbf{z}_{a})}{p(\mathbf{y}|\mathbf{X}, \mathbf{z}_{b})} = (1+n)^{(\rho_{z_{b}} - \rho_{z_{a}})/2} \left(\frac{s_{z_{a}}^{2}}{s_{z_{b}}^{2}}\right)^{1/2} \times \left(\frac{s_{z_{b}}^{2} + \text{SSR}_{g}^{z_{b}}}{s_{z_{a}}^{2} + \text{SSR}_{g}^{z_{b}}}\right)^{(n+1)/2}$$

A model \mathbf{z}_a is penalized if;

- it is too complex (nuber of covariates p_A is large)
- it doesn't fit well (SSR^a_g is large)

FTO example

$$\begin{split} \mathrm{E}[Y_i|\boldsymbol{\beta},\mathbf{x}_i] &= \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} \\ &= \beta_1 + \beta_2 \times \mathrm{grp}_i + \beta_3 \times \mathrm{age}_i + \beta_4 \times \mathrm{grp}_i \times \mathrm{age}_i \,. \end{split}$$

effect of group \Leftrightarrow one of more of β_2, β_4 not zero

z	model	$\log p(\mathbf{y} \mathbf{X}, \mathbf{z})$	$p(\mathbf{z} \mathbf{y}, \mathbf{X})$
(1,0,0,0)	β_1	-71.82	0
(1,1,0,0)	$\beta_1 + \beta_2 \times \operatorname{grp}_i$	-70.04	0
(1,0,1,0)	$\beta_1 + \beta_3 imes age_i$	-67.04	0
(1,1,1,0)	$\beta_1 + \beta_2 \times \operatorname{grp}_i + \beta_3 \times \operatorname{age}_i$	-61.19	0.63
(1, 1, 1, 1)	$\beta_1 + \beta_2 \times \operatorname{grp}_i + \beta_3 \times \operatorname{age}_i + \beta_4 \times \operatorname{grp}_i \times \operatorname{age}_i$	-61.72	0.37

$$\mathsf{Pr}(eta_2 ext{ or } eta_4
eq 0) = 0.60$$

 $\mathsf{Pr}(eta_2 ext{ or } eta_4
eq 0 | \mathbf{y}, \mathbf{X}) \approx 1$

High dimensional regression

Diabetes example: $p = 100 \Rightarrow 2^{100} \approx 10^{30}$ models to consider.

We can't compute $p(\mathbf{z}|\mathbf{y}, \mathbf{X})$ for each \mathbf{z} . Instead, we hope to

- search for models z with high posterior probability;
- approximate $\beta_j = z_j \times b_j$ for each j;
- build a predictive model for y.

This can be achieved via a Monte Carlo method known as Gibbs sampling.

The Gibbs sampler

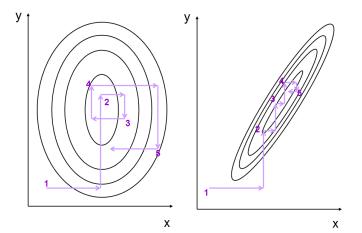
Goal: A Monte Carlo approximation to p(x, y, z)

 $\begin{array}{l} \text{Given } \{x^{(s)}, y^{(s)}, z^{(s)}\}, \\ 1. \ \text{simulate } x^{(s+1)} \sim p(x|y^{(s)}, z^{(s)}), \\ 2. \ \text{simulate } y^{(s+1)} \sim p(y|x^{(s+1)}, z^{(s)}), \\ 3. \ \text{simulate } z^{(s+1)} \sim p(z|x^{s+1}, y^{(s+1)}) \ . \\ \text{This generates } \{x^{(s+1)}, y^{(s+1)}, z^{(s+1)}\} - \text{ and then 'go round' again, many times.} \\ \text{Repeated many times, this generates } \{x^{(1)}, y^{(1)}, z^{(1)}\}, \dots, \{x^{(S)}, y^{(S)}, z^{(S)}\} \end{array}$

Stochastic search

The Gibbs sampler

For a couple of two-dimensional examples;

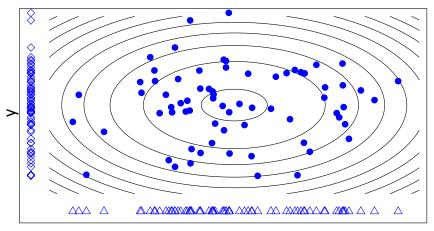


Stochastic search

The Gibbs sampler

Output from a short sampler;

Sample (points) approximate distribution (contours)



The Gibbs sampler

Repeated many times, this generates $\{x^{(1)}, y^{(1)}, z^{(1)}\}, \dots, \{x^{(S)}, y^{(S)}, z^{(S)}\}$ The distribution of this sequence *approximates* p(x, y, z):

$$\frac{1}{S} \sum_{x} x^{(s)} \approx E[x] = \int x \ p(x, y, z) \ dx \ dy \ dz$$
$$\frac{\#(x^{(s)} \in A)}{S} \approx Pr(x \in A) = \int \int \int_{A} p(x, y, z) \ dx \ dy \ dz$$
$$\frac{\#(\{x^{(s)}, y^{(s)}, z^{(s)}\} \in B)}{S} \approx \int \int_{B} \int p(x, y, z) \ dx \ dy \ dz$$

By necessity, the sequence will frequently visit regions where p(x, y, z) is large.

Gibbs sampling for model selection

Goal Approximate $p(z_1, \ldots, z_p | \mathbf{y}, \mathbf{X})$.

Gibbs sampler: Given $\mathbf{z}^{(s)} = (z_1^{(s)}, \dots, z_p^{(s)})$,

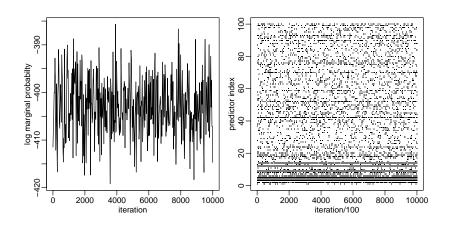
$$\begin{array}{ll} z_1^{(s+1)} & \sim & p(z_1 | z_2^{(s)}, \dots, z_p^{(s)}, \mathbf{y}, \mathbf{X}) \\ z_2^{(s+1)} & \sim & p(z_2 | z_1^{(s+1)}, z_3^{(s)}, \dots, z_p^{(s)}, \mathbf{y}, \mathbf{X}) \\ & \vdots \\ z_p^{(s+1)} & \sim & p(z_p | z_1^{(s+1)}, \dots, z_{p-1}^{(s+1)}, \mathbf{y}, \mathbf{X}) \end{array}$$

This generates $\mathbf{z}^{(s+1)}$ from $\mathbf{z}^{(s)}$.

Repeating this generates $z^{(1)}, \ldots, z^{(S)}$ with which to approximate $p(\mathbf{z}|\mathbf{y}, \mathbf{X})$.

Stochastic search

Diabetes example



Marginal inference

What is the estimate of β ?

Recall

$$\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p) = (b_1 z_1, \ldots, b_p, z_p)$$

Our Monte Carlo samples are

$$\begin{array}{rcl} \beta^{(1)} &=& (0 & -.299 & 0 & .427 & \cdots & .845) \\ \beta^{(2)} &=& (0 & -.235 & .834 & .374 & \cdots & 0) \\ \vdots & & & \vdots \\ \beta^{(5)} &=& (0 & -.315 & 0 & .536 & \cdots & 0) \end{array}$$

A posterior mean for β is obtained in the usual way:

$$\hat{oldsymbol{eta}}^{\mathsf{bayes}} = rac{1}{S} \sum oldsymbol{eta}^{(s)} pprox \mathrm{E}[oldsymbol{eta}| \mathbf{y}, \mathbf{X}]$$

Out of sample predictions can be made with $\hat{m{eta}}_{\text{bayes}}$:

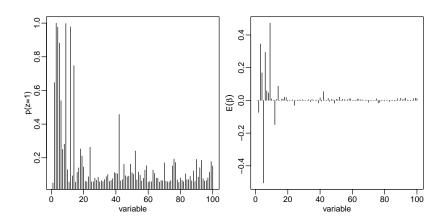
$$\hat{y}_{\text{test},i}^{\textit{bayes}} = \hat{oldsymbol{\beta}}_{\text{bayes}}^{\mathcal{T}} \mathbf{x}_{\text{test},i}$$

Out of sample prediction error:

$$\frac{1}{S}\sum(y_{\text{test,i}} - \hat{y}_{\text{test,i}}^{bayes})^2 = 0.4852529$$

Stochastic search

Marginal inference



Stochastic search

Important variables

<pre>colnames(X)[order(z.pmean,decreasing=TRUE)[1:10]]</pre>									
	[1] "bmi" [8] "ldl"			"map"	"tc"	"sex.age"	"sex"		
<pre>colnames(X)[order(b.pmean,decreasing=TRUE)[1:10]]</pre>									
		"bmi" "glu.bmi"		"map"	"sex.age"	"hdl"	"ltg.age"		

Stochastic search

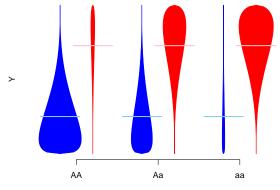
Other approaches, briefly

Model-averaging in this way gives an honest statement of uncertainty. But;

- Not all variables are in the model for the same reason may want to 'force' some covariates into the model
- When selecting a single, parsimonious model, may want to maximize its ability to predict not its probability of being true

Confounding

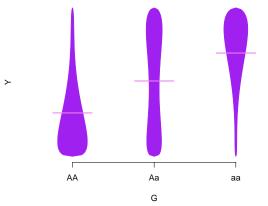
'Confounding' means not being able to distinguish between a signal of interest, and some other cause. Here's a genetic 'signal';



G

Confounding

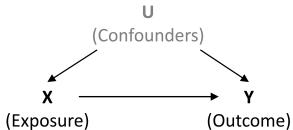
...which can be explained by ancestry, i.e. is confounded by ancestry



However, analysis that adjusts for ancestry would be of interest – even if models without it are better-supported.

Confounding

Directed Acyclic Graphs (DAGs) are a general language for confounding;



Arrows indicate causal relationships; confounding means 'backdoor paths' exist; these can be removed by adjustment for confounders. In genetic association work, typically ancestry is the only plausible confounder - expression and methlyation work is more complex.

Confounding

Bayesian Adjustment for Confounding (BAC, Wang et al 2012) specifies a model with

- 1. Dependence of outcome on the exposure and the set of confounders
- 2. Dependence of exposure on the set of confounders
- 3. Dependence between these models, making variable inclusion in (1) more likely if it is included in (2)

So BAC fits two set of z indicators, and links them. Modeling exposures is unusual – doing it well takes careful work.

The method is implemented in BEAU, a stand-alone R package, using approximate calculations for the posterior.

Prediction

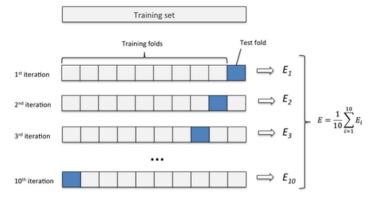
Understanding causes (and confounding) is often very important – but ability to predict can matter too;

- Remaining lifetime
- Drug response
- Telling 'good' genotyping from 'bad'

To pick a model here, it's reasonable to ask how well it would predict *in similarly-collected data*. This choice may not be the same as asking what the causes are, e.g. TV ownership rates predict child mortality but are not a cause.

Cross-validation

A natural way to assess how well a fitted model predicts is to fit it, and predict!



SSR is a common measure of predictive accuracy

Cross-validation

- 1. *SSR* (squared error loss) is not the only option need to consider the *loss* (*utility*) of particular predictions
- 2. For categorical outcomes, could also weight misclassification rates (e.g. P(1|0) and P(0|1)) some mistakes may be worse than others
- 3. Trickier still for dependent outcomes
- 4. 10-fold cross-validation is typical
- 5. Fitting multiple models with Gibbs sampling, and cross-validating each can be too slow

Approximate prediction measures

The standard 'score' is log posterior predictive density

$$\log p_{\text{ppost}}(y) = \log \int p(y|\theta)p(\theta|y)_{\text{obs}}d\theta).$$

Expected out-of-sample accuracy (over new datasets \tilde{y}) is defined as

$$elpd = E(\log p_{ ext{ppost}}(ilde{y})) = \int \log p_{ ext{ppost}}(ilde{y}) d ilde{y}$$

for true density $q(\tilde{y})$. A natural way to estimate this is through the 'in sample accuracy',

$$lpd = \log \int p(y_{obs}|\theta)p(\theta|y)_{obs}d\theta,$$

but its double-use of the posterior leads to bias - worse with more parameters.

Approximate prediction measures

- Akaike's Information Criterion (AIC) approximates lpd by $\log p(y_{obs}|\hat{\theta}_{MLE})$ - so is not Bayesian, and adds bias-correction k, the number of parameters
- Deviance Information Criterion (DIC) approximates *lpd* by $\log p(y_{obs}|E(\theta|y_{obs}))$ and adds the *effective number of parameters*,

$$p_D = 2(\log p(y_{obs}|E(\theta|y_{obs})) - E_{\theta}[\log p(y_{obs}|\theta)])$$

For either, in large samples – and under some conditions – choosing the model with the lowest value is equivalent to doing cross-validation.

NB Several other versions are available; AIC, DIC2, WAIC...

Stochastic search

DIC examples

- Shriner and Yi 2009 use DIC in the context of multiple QTL Mapping to select how many QTLs there are, and their locations
- Yu et al, 2012 use DIC studying gene×environment interactions, with a model that 'clusters' nearby* variants, so they have similar interaction effects. DIC is used to choose how many clusters

* ...using the Potts model