2016 SISG Module 16: Bayesian Statistics for Genetics Lecture 5: Multinomial Sampling

Jon Wakefield

Departments of Statistics and Biostatistics
University of Washington

Outline

Introduction and Motivating Examples

Bayesian Analysis of Multinomial Data
Derivation of the Posterior and Prior Specfication Inference for Parameters of Interest

Analysis of HWE Data

Appendix: BF Detail

Introduction

- In this lecture we will consider the Bayesian modeling of multinomial data.
- The examination of Hardy-Weinberg equilibrium will be used to motivate the multinomial model.
- Again, conjugate priors will be used, though sampling from the posterior will be emphasized as a method for flexible inference.
- Bayes factors will be used as a measure of evidence for hypothesis testing.

Motivating Example: Testing for HWE

- For simplicity we consider a diallelic marker, and suppose we obtain a random sample of genotypes for n individuals.
- The form of the data is

	Genotype			Total
	$A_{1} A_{1}$	$A_{1} A_{2}$	$A_{2} A_{2}$	
Count	n_{1}	n_{2}	n_{3}	n
Population Frequency	q_{1}	q_{2}	q_{3}	1

- So the model contains 3 probabilities (which sum to 1) q_{1}, q_{2}, q_{3}; hence, there are 2 free parameters.
- Suppose the proportions of alleles A_{1} and A_{2} in a given generation are p_{1} and $p_{2}=1-p_{1}$.
- In terms of q_{1}, q_{2}, q_{3} :

$$
\begin{aligned}
& p_{1}=q_{1}+\frac{q_{2}}{2} \\
& p_{2}=\frac{q_{2}}{2}+q_{3}
\end{aligned}
$$

Motivating Example: Testing for HWE

- HWE is the statistical independence of an individual's alleles at a locus.
- Under HWE, the probability distribution for the genotype of an individual in the next generation is:

	Genotype			
	$A_{1} A_{1}$	$A_{1} A_{2}$	$A_{2} A_{2}$	
Proportion	p_{1}^{2}	$2 p_{1} p_{2}$	p_{2}^{2}	1

- Reasons for deviation from HWE include: small population size, selection, inbreeding and population structure.

A Toy Example

Example:

- Consider the data $n_{1}=88, n_{2}=10, n_{3}=2$.
- Are these frequencies consistent with HWE?
- The MLEs are:

$$
\begin{array}{lll}
\widehat{q}_{1}=0.88 & \hat{q}_{2}=0.10 & \hat{q}_{3}=0.02 \\
\widehat{p}_{1}=0.93 & \hat{p}_{2}=0.07 &
\end{array}
$$

- For these data the exact p-value for

$$
H_{0}: q_{1}=p_{1}^{2}, \quad q_{2}=2 p_{1} p_{2}, \quad q_{3}=p_{2}^{2}
$$

is 0.0654 .

Critique of Non-Bayesian Approach

- Testing for HWE is carried out via (asymptotic, i.e., large sample) χ^{2} tests or exact tests.
- χ^{2} tests require very large sample sizes for accurate p-values.
- The exact test can be computationally expensive to perform, when there are many alleles/samples.
- Under the null of HWE, the discreteness of the test statistic causes difficulties.
- In general, how to decide on a significance level? The level should be a function of sample size (and in particular should decrease as sample size increases), but how should it be chosen?
- Estimation depends on asymptotic approximations (i.e., large sample sizes).
- Estimation also difficult due to awkward constraints on parameters (particularly with many alleles).

Bayes Theorem

	Genotype			Total
	$A_{1} A_{1}$	$A_{1} A_{2}$	$A_{2} A_{2}$	
Count	n_{1}	n_{2}	n_{3}	n
Population Frequency	q_{1}	q_{2}	q_{3}	1

- The multinomial with three counts is known as the trinomial distribution.
- We have three parameters, q_{1}, q_{2}, q_{3}, but they sum to 1 , so that effectively we have two parameters.
- We write $\mathbf{q}=\left(q_{1}, q_{2}, q_{3}\right)$ to represent the vector of probabilities, and $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$ for the data vector.
- Via Bayes Theorem:

$$
\begin{aligned}
p(\mathbf{q} \mid \mathbf{n}) & =\frac{\operatorname{Pr}(\mathbf{n} \mid \mathbf{q}) \times p(\mathbf{q})}{\operatorname{Pr}(\mathbf{n})} \\
\text { Posterior } & \propto \text { Likelihood } \times \text { Prior }
\end{aligned}
$$

Elements of Bayes Theorem: The Likelihood

- We assume n independent draws with common probabilities $\mathbf{q}=\left(q_{1}, q_{2}, q_{3}\right)$.
- In this case, the distribution of n_{1}, n_{2}, n_{3} is multinomial:

$$
\begin{equation*}
\operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid q_{1}, q_{2}, q_{3}\right)=\frac{n!}{n_{1}!n_{2}!n_{3}!} q_{1}^{n_{1}} q_{2}^{n_{2}} q_{3}^{n_{3}} . \tag{1}
\end{equation*}
$$

- For fixed \mathbf{n}, we may view (1) as a function of \mathbf{q} - this is the likelihood function.
- The maximum likelihood estimate (MLE) is

$$
\widehat{\mathbf{q}}=\left(\frac{n_{1}}{n}, \frac{n_{2}}{n}, \frac{n_{3}}{n}\right) .
$$

- The MLE gives the highest probability to the observed data, i.e. maximizes the likelihood function.

The Dirichlet Distribution as a Prior Choice for a Multinomial q

- Once the likelihood is specified we need to think about the prior distribution.
- We require a prior distribution over $\left(q_{1}, q_{2}, q_{3}\right)$ - not straightforward since the three probabilities all lie in $[0,1]$, and must sum to 1 .
- A distribution that satisfies these requirements is the dirichlet distribution, denoted $\operatorname{dirichlet}\left(v_{1}, v_{2}, v_{3}\right)$ and has density:

$$
\begin{aligned}
p\left(q_{1}, q_{2}, q_{3}\right) & =\frac{\Gamma\left(v_{1}+v_{2}+v_{3}\right)}{\Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \Gamma\left(v_{3}\right)} \times q_{1}^{v_{1}-1} q_{2}^{v_{2}-1} q_{3}^{v_{3}-1} \\
& \propto q_{1}^{v_{1}-1} q_{2}^{v_{2}-1} q_{3}^{v_{3}-1}
\end{aligned}
$$

where $\Gamma(\cdot)$ denotes the gamma function.

The Dirichlet Distribution as a Prior Choice for a Multinomial q

- The dirichlet $\left(v_{1}, v_{2}, v_{3}\right)$ prior:

$$
\begin{aligned}
p\left(q_{1}, q_{2}, q_{3}\right) & =\frac{\Gamma\left(v_{1}+v_{2}+v_{3}\right)}{\Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \Gamma\left(v_{3}\right)} \times q_{1}^{v_{1}-1} q_{2}^{v_{2}-1} q_{3}^{v_{3}-1} \\
& \propto q_{1}^{v_{1}-1} q_{2}^{v_{2}-1} q_{3}^{v_{3}-1} .
\end{aligned}
$$

- $v_{1}, v_{2}, v_{3}>0$ are specified to reflect prior beliefs about $\left(q_{1}, q_{2}, q_{3}\right)$.
- The dirichlet distribution can be used with general multinomial distributions (i.e. for $k=2,3, \ldots$ categories).
- The beta distribution is a special case of the dirichlet when there are two categories only.

Dirichlet Prior

- The mean and variance are

$$
\begin{aligned}
\mathrm{E}\left[q_{i}\right] & =\frac{v_{i}}{v_{1}+v_{2}+v_{3}}=\frac{v_{i}}{v} \\
\operatorname{var}\left(q_{i}\right) & =\frac{\mathrm{E}\left[q_{i}\right]\left(1-\mathrm{E}\left[q_{i}\right]\right)}{v_{1}+v_{2}+v_{3}+1}=\frac{\mathrm{E}\left[q_{i}\right]\left(1-\mathrm{E}\left[q_{i}\right]\right)}{v+1}
\end{aligned}
$$

for $i=1,2,3$, where $v=v_{1}+v_{2}+v_{3}$.

- Large values of v increase the influence of the prior.
- The dirichlet has a single parameter only (v) to control the spread for all of the dimensions, which is a deficiency.
- The quartiles may be empirically calculated from samples.

Figure 1: Samples from a dirichlet $(1,1,1)$ distribution. The mean is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

Figure 2: Samples from a dirichlet $(6,6,6)$ distribution. The mean is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

Figure 3: Samples from a dirichlet $(6,4,1)$ distribution. The mean is $\left(\frac{6}{11}, \frac{4}{11}, \frac{1}{11}\right)=(0.55,0.36,0.09)$.

Posterior Distribution

- Combining the Dirichlet prior, $\operatorname{dirichlet}\left(v_{1}, v_{2}, v_{3}\right)$, with the multinomial likelihood gives the posterior:

$$
\begin{aligned}
p\left(q_{1}, q_{2}, q_{3} \mid \mathbf{n}\right) & \propto \operatorname{Pr}(\mathbf{n} \mid \mathbf{q}) \times p(\mathbf{q}) \\
& \propto q_{1}^{n_{1}} q_{2}^{n_{2}} q_{3}^{n_{3}} \times q_{1}^{v_{1}-1} q_{2}^{v_{2}-1} q_{3}^{v_{3}-1} \\
& =q_{1}^{n_{1}+v_{1}-1} q_{2}^{n_{2}+v_{2}-1} q_{3}^{n_{3}+v_{3}-1} .
\end{aligned}
$$

- This distribution is another Dirichlet:

$$
\operatorname{dirichlet}\left(n_{1}+v_{1}, n_{2}+v_{2}, n_{3}+v_{3}\right)
$$

- Notice: "as if" we had observed counts $\left(n_{1}+v_{1}, n_{2}+v_{2}, n_{3}+v_{3}\right)$.

Choosing a Prior

- The posterior mean for the expected proportion of counts in cell i is, for $i=1,2,3$:

$$
\begin{aligned}
\mathrm{E}\left[q_{i} \mid \mathbf{n}\right] & =\frac{n_{i}+v_{i}}{n+v} \\
& =\frac{n_{i}}{n} \frac{n}{n+v}+\frac{v_{i}}{v} \frac{v}{n+v} \\
& =\text { MLE } \times \mathrm{W}+\text { Prior Mean } \times(1-\mathrm{W})
\end{aligned}
$$

where $n=n_{1}+n_{2}+n_{3}, v=v_{1}+v_{2}+v_{3}$.

- The weight W is

$$
\mathrm{W}=\frac{n}{n+v}
$$

which is the proportion of the total information $(n+v)$ that is contributed by the data (n).

Choosing a Prior

- Recall the prior mean is

$$
\left(\frac{v_{1}}{v}, \frac{v_{2}}{v}, \frac{v_{3}}{v}\right)
$$

- These forms help to choose v_{1}, v_{2}, v_{3}.
- As with the beta distribution we may specify the prior means, and the relative weight that the prior and data contribute: n and v are on a comparable scale.
- For example, suppose we believe that event 1 is four times as likely as each of event 2 or event 3.
- Then we may specify the means in the ratios $4: 1: 1$.
- Suppose $n=24$ and we wish to allow the prior contribution to be a half of this total (and therefore a third of the complete information). Then the prior sample size is $v=12$ and the prior mean requirement gives

$$
v_{1}=8, v_{2}=2, v_{3}=2
$$

A Uniform Prior

An obvious choice of parameters is $v_{1}=v_{2}=v_{3}=1$ to give a prior that is uniform over the simplex:

$$
\pi\left(q_{1}, q_{2}, q_{3}\right)=2
$$

for

$$
0<q_{1}, q_{2}, q_{3}<1, \quad q_{1}+q_{2}+q_{3}=1
$$

Note: not uniform over all parameter of interests, as we see shortly

Simple HWE Example

- The data is

$$
n_{1}=88, n_{2}=10, n_{3}=2
$$

- We assume a flat dirichlet prior on the allowable values of \mathbf{q} :

$$
v_{1}=v_{2}=v_{3}=1
$$

- This gives the posterior as $\operatorname{dirichlet}(88+1,10+1,2+1)$ with posterior means:

$$
\begin{aligned}
& \mathrm{E}\left[q_{1} \mid \mathbf{n}\right]=\frac{1+88}{3+100}=\frac{89}{103} \\
& \mathrm{E}\left[q_{2} \mid \mathbf{n}\right]=\frac{1+10}{3+100}=\frac{11}{103} \\
& \mathrm{E}\left[q_{3} \mid \mathbf{n}\right]=\frac{1+2}{3+100}=\frac{3}{103} .
\end{aligned}
$$

- Note the similarity to the MLEs of

$$
\left(\frac{88}{100}, \frac{10}{100}, \frac{2}{100}\right)
$$

Simple HWE Example

- We continue with this example and now examine posterior distributions.
- We generate samples from

$$
\operatorname{dirichlet}(88+1,10+1,2+1)
$$

- As posterior summaries we display, in Figure 4:
- Histograms of the 3 univariate marginal distributions $p\left(q_{1} \mid \mathbf{y}\right), p\left(q_{2} \mid \mathbf{y}\right)$, $p\left(q_{3} \mid \mathbf{y}\right)$.
- Scatterplots of the 3 bivariate marginal distributions $p\left(q_{1}, q_{2} \mid \mathbf{y}\right), p\left(q_{1}, q_{3} \mid \mathbf{y}\right)$, $p\left(q_{2}, q_{3} \mid \mathbf{y}\right)$.
- On each plot we indicate the MLEs for the general model, i.e. the non-HWE model (in red) and under the assumption of HWE (in blue).

Samples from the Posterior

Figure 4 : Univariate and bivariate posterior distributions for $\mathbf{n}=(88,10,2)$. MLEs in red for the general model and in blue for the HWE model.

Bayes analysis of $(88,10,2)$ data

- As expected with a sample size of $n=100$ and a flat prior, the MLEs lie close to the center of the posteriors.
- Note the asymmetry of the posteriors.
- Asymptotic confidence intervals of the form $\widehat{q}_{i} \pm 1.96 \times \operatorname{se}\left(\widehat{q}_{i}\right)$ would be symmetric.

Bayes analysis of $(88,10,2)$ data

- In the context of a binomial sampling model and interest in a particular point (for example, $\theta=0.5$) we could examine intervals for θ.
- In a multinomial context the situation is more complex; shortly we will examine Bayes factors to carry out hypothesis testing.

Parameters of Interest

	Genotype			
Total				
	$A_{1} A_{1}$	$A_{1} A_{2}$	$A_{2} A_{2}$	
Population Frequency	q_{1}	q_{2}	q_{3}	1

- Rather than q_{1}, q_{2}, q_{3}, we may be interested in other parameters of interest.
- In the HWE context: Let X_{1} and X_{2} be $0 / 1$ indicators of A_{1} for the two alleles at a locus.
- The covariance between X_{1} and X_{2} is the disequilibrium coefficent:

$$
D=q_{1}-p_{1}^{2}
$$

Under HWE $q_{1}=p_{1}^{2}$, and the covariance is zero.

- Another quantity of interest (Shoemaker et al., 1998) is

$$
\psi=\frac{q_{2}^{2}}{q_{1} q_{3}}
$$

Under HWE, $\psi=4$.

Parameters of Interest

- The inbreeding coefficient is

$$
f=\frac{q_{1}-p_{1}^{2}}{p_{1} p_{2}}
$$

- The variance of X_{1} and X_{2} is $p_{1}\left(1-p_{1}\right)=p_{1} p_{2}$ and so f is the correlation.
- We may express q_{1}, q_{2}, q_{3} as

$$
\begin{aligned}
q_{1} & =p_{1}^{2}+p_{1}\left(1-p_{1}\right) f \\
q_{2} & =2 p_{1}\left(1-p_{1}\right)(1-f) \\
q_{3} & =\left(1-p_{1}\right)^{2}+p_{1}\left(1-p_{1}\right) f
\end{aligned}
$$

- Positive values of f indicate an excess of homozygotes (and may indicate inbreeding), while negative values indicate an excess of heterozygotes.

Parameters of Interest

- Each of D, ψ and f are complex functions of q_{1}, q_{2}, q_{3} and given a Dirichlet prior for the latter do not have known posterior forms.
- The "flat" prior for \mathbf{q}, dirichlet $(1,1,1)$, does not correspond to a flat prior for D, f, ψ, as Figure 5 shows.

Figure 5: Samples from a dirichlet $(1,1,1)$ for various functions.

Implied Prior on Functions of Interest

- Very important point: As we saw in the binomial development, you can't be "flat" on every scale, but the implications of particular priors can be assessed via simulation.
- We emphasize that we are not uniform on the marginal distributions for q_{i}, since these follow

$$
\operatorname{beta}\left(v_{i}, v-v_{i}\right)
$$

distributions, i.e. beta(1,2) if $v_{1}=v_{2}=v_{3}=1$.

- The priors on the measures of distance from HWE are far from uniform.
- For example, with a "flat" Dirichlet prior dirichlet $(1,1,1)$ the prior probability that $f>0$ is 0.67 .

Bayesian Approaches to HWE

Previous approaches include:

- Altham (1971).
- Pereira and Rogatko (1984).
- Lindley (1988).
- Shoemaker et al. (1998).
- Montoya-Delgado et al. (2001).
- Consonni et al. (2008).
- Wakefield (2010).

Bayes factors for HWE

- Recall that Bayes factors measure the evidence in a sample for one hypothesis, as compared to an alternative.
- We derive the Bayes factor for multinomial data in the context of testing for HWE.
- We wish to test
H_{0} : HWE versus H_{1} : Not HWE.
- We need to specify priors on the null and alternatives, and then calculate the Bayes factor:

$$
\frac{\operatorname{Pr}\left(\mathbf{n} \mid H_{0}\right)}{\operatorname{Pr}\left(\mathbf{n} \mid H_{1}\right)}
$$

where p_{1} and $\left(q_{1}, q_{2}\right)$ are the parameters under the null and alternative, respectively.

The HWE Bayes Factor

- The Bayes factor, measuring the evidence in the data for the null, as compared to the alternative is:

$$
\mathrm{BF}=\frac{2^{n_{2}} \Gamma(w) \Gamma\left(2 n_{1}+n_{2}+w_{1}\right) \Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \Gamma\left(v_{3}\right) \Gamma\left(n_{2}+2 n_{3}+w_{2}\right) \Gamma(n+v)}{\Gamma\left(w_{1}\right) \Gamma\left(w_{2}\right) \Gamma(2 n+w) \Gamma(v) \Gamma\left(n_{1}+v_{1}\right) \Gamma\left(n_{2}+v_{2}\right) \Gamma\left(n_{3}+v_{3}\right)} .
$$

- This appears complex, but is just a function of the observed data, and the prior inputs, and can be easily evaluated ${ }^{1}$.
- If $\mathrm{BF}>1(<1)$ the data are more (less) likely to have come from the null.
- Can be readily extended to $k>2$ alleles.
- We next consider a formal decision rule.

[^0]
Bayesian Decision Theory

- Decision as to reject H_{0} in favor of H_{1} depends on the costs of making the two types of error:

		Decision	
		Report H_{0}	Report H_{1}
Truth	H_{0}	0	C_{1}
	H_{1}	$C_{I I}$	0

- Costs of making the two types of error $C_{/}$is the cost of a type I error and $C_{\text {II }}$ the cost of a type II error.
- The decision theory solution is to report H_{1} if:

$$
\text { Posterior Odds of } H_{0}=\mathrm{BF} \times \text { Prior Odds }<\frac{C_{l I}}{C_{l}}=R
$$

so that we only need to consider the ratio of costs R.

- If $\frac{c_{I I}}{C_{I}}=4$ (type II errors four times as bad as type I errors) then report H_{1} if

$$
\text { Posterior Odds of } H_{0}<4 \text {, }
$$

i.e. if

$$
\operatorname{Pr}\left(H_{1} \mid \text { data }\right)>0.2
$$

A Simple Example

- We again consider the data $n_{1}=88, n_{2}=10, n_{3}=2$.
- These data give a p-value of 0.0654 .
- With "flat" conjugate Dirichlet priors ($w_{1}=w_{2}=v_{1}=v_{2}=v_{3}=1$) we obtain a Bayes factor of 1.54 so that the data are 50% more likely under the null than the alternative, so the evidence in favor of H_{0} is not strong.
- With a prior probability of the null π_{0}, to give a prior odds of $\pi_{0} /\left(1-\pi_{0}\right)$, we have

$$
\text { Posterior Odds of } H_{0}=\mathrm{BF} \times \frac{\pi_{0}}{1-\pi_{0}}
$$

- Hence, with $\pi_{0}=0.5$ the posterior odds equal the Bayes factor, i.e. 1.54.
- The posterior probability of the null is

$$
\frac{1.54}{1+1.54}=0.61
$$

- This probability is very sensitive to the prior on the null. For example, with $\pi_{0}=2 / 3$ we obtain a posterior odds of $1.54 \times 2=3.08$ to give a posterior probability on the null of

$$
\frac{3.08}{1+3.08}=0.75
$$

Posterior Inference for Functions of Interest

- Figure 6 shows functions of interest for the $(88,10,2)$ example.
- Note that the asymptotic confidence interval for f is $(-0.1032,0.5632)$.

Figure 6: Posterior inference for simple HWE example.

The HWEBayes Package

- The R package HWEBayes implements the rejection algorithm and importance sampling (a numerical integration technique), for testing and estimation in the HWE context:
http://cran.r-project.org/web/packages/HWEBayes/index.html
- The vignette contains a worked example.
- Code for a four-allele example is here:
http://faculty.washington.edu/jonno/HWEBayesFourAllele.R
- More details of the methodology: Wakefield (2010).

Conclusions

- The dirichlet distribution is convenient but quite inflexible as a prior distribution.
- Alternative priors are more difficult to specify since they are on scales that are more difficult to interpret (e.g. the logistic-normal distribution).
- Bayes factors are sensitive to the prior.
- Monte Carlo sampling is a powerful tool for inference.
- For multiple alleles computation is slow whether the approach is frequentist or Bayesian.

References

Altham, P. (1971). Exact Bayesian analysis of an intraclass 2×2 table. Biometrika, 58, 679-680.

Consonni, G., Gutierrez-Pena, E., and Veronese, P. (2008). Compatible priors for Bayesian model comparison with an application to the Hardy-Weinberg equilibrium model. Test, 17, 585-605.

Lindley, D. (1988). Statistical inference concerning Hardy-Weinberg equilibrium. In J. Bernardo, M. DeGroot, D. Lindley, and A. Smith, editors, Bayesian Statistics 3, pages 307-326, Oxford University Press, Oxford.

Montoya-Delgado, L., Irony, T., de B. Pereira, C., and Whittle, M. (2001). An unconditional exact test for the Hardy-Weinberg equilibrium law: sample-space ordering using the Bayes factor. Genetics, 158, 875-883.

Pereira, C. and Rogatko, A. (1984). The Hardy-Weinberg equilibrium under a Bayesian perspective. Revista Brasieira de Genetica, 4, 689-707.

Shoemaker, J., Painter, I., and Weir, B. (1998). A Bayesian characterization of Hardy-Weinberg disequilibrium. Genetics, 149, 2079-2088.

Wakefield, J. (2010). Bayesian methods for examining Hardy-Weinberg equilibrium. Biometrics, 66, 257-265.

Derivation of Bayes Factor for Assessing HWE

- We need to specify priors on the null and alternatives, and then calculate the Bayes factor:

$$
\frac{\operatorname{Pr}\left(\mathbf{n} \mid H_{0}\right)}{\operatorname{Pr}\left(\mathbf{n} \mid H_{1}\right)}=\frac{\int \operatorname{Pr}\left(\mathbf{n} \mid p_{1}\right) p\left(p_{1}\right) d p_{1}}{\int \operatorname{Pr}\left(\mathbf{n} \mid q_{1}, q_{2}\right) p\left(q_{1}, q_{2}\right) d q_{1} d q_{2}}
$$

where p_{1} and $\left(q_{1}, q_{2}\right)$ are the parameters under the null and alternative, respectively.

- Under the null we have a single parameter, and under the alternative two.
- Important point: When Bayes factors are evaluated we need to include the normalizing constants.

HWE Bayes Factor

- Under H_{0} and H_{1} we must take care to evaluate the probability of the same data, n_{1}, n_{2}, n_{3}.
- Under the null,

$$
\operatorname{Pr}\left(\mathbf{n} \mid p_{1}\right)=\operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid p_{1}\right)=\frac{n!2^{n_{1}}}{n_{2}!n_{12}!n_{3}!} p_{1}^{2 n_{1}+n_{2}}\left(1-p_{1}\right)^{n_{2}+2 n_{3}} .
$$

- With a $\operatorname{Be}\left(w_{1}, w_{2}\right)$ prior on p_{1} :

$$
\begin{align*}
\operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid H_{0}\right) & =\int \operatorname{Pr}\left(\mathbf{n} \mid p_{1}\right) \times p\left(p_{1}\right) d p_{1} \\
& =\frac{n!2^{n_{2}} \Gamma(w) \Gamma\left(2 n_{1}+n_{2}+w_{1}\right) \Gamma\left(n_{2}+2 n_{3}+w_{2}\right)}{n_{1}!n_{2}!n_{3}!\Gamma\left(w_{1}\right) \Gamma\left(w_{2}\right) \Gamma(2 n+w)} \tag{2}
\end{align*}
$$

- This is the probability of the observed data under the null.

HWE Bayes Factor

- The Bayes factor is

$$
\frac{\operatorname{Pr}\left(\mathbf{n} \mid H_{0}\right)}{\operatorname{Pr}\left(\mathbf{n} \mid H_{1}\right)}
$$

and we have just given the form of the numerator.

- We now turn to the denominator.
- Under the alternative we assume $\mathbf{q} \sim \operatorname{dirichlet}\left(v_{1}, v_{2}, v_{3}\right)$.
- The probability of the data under the alternative is:

$$
\begin{align*}
\operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid H_{1}\right) & =\int \operatorname{Pr}\left(\mathbf{n} \mid q_{1}, q_{2}\right) \times p\left(q_{1}, q_{2}\right) d q_{1} d q_{2} \\
& =\frac{n!\Gamma(v) \Gamma\left(n_{1}+v_{1}\right) \Gamma\left(n_{2}+v_{2}\right) \Gamma\left(n_{3}+v_{3}\right)}{n_{1}!n_{2}!n_{3}!\Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \Gamma\left(v_{3}\right) \Gamma(n+v)} . \tag{3}
\end{align*}
$$

- Again, just a probability distribution, which we may evaluate for any realization of $\left(n_{1}, n_{2}, n_{3}\right)$.

The HWE Bayes Factor

- Hence, the Bayes factor, measuring the evidence in the data for the null, as compared to the alternative is:

$$
\begin{aligned}
\mathrm{BF} & =\frac{\operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid H_{0}\right)}{\operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid H_{1}\right)} \\
& =\frac{2^{n_{2}} \Gamma(w) \Gamma\left(2 n_{1}+n_{2}+w_{1}\right) \Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \Gamma\left(v_{3}\right) \Gamma\left(n_{2}+2 n_{3}+w_{2}\right) \Gamma(n+v)}{\Gamma\left(w_{1}\right) \Gamma\left(w_{2}\right) \Gamma(2 n+w) \Gamma(v) \Gamma\left(n_{1}+v_{1}\right) \Gamma\left(n_{2}+v_{2}\right) \Gamma\left(n_{3}+v_{3}\right)}
\end{aligned}
$$

which is (2) divided by (3).

- This appears complex, but is just a function of the observed data, and the prior inputs, and can be easily evaluated.
- If $\mathrm{BF}>1(<1)$ the data are more (less) likely to have come from the null.
- Can be readily extended to $k>2$ alleles.
- We next consider a formal decision rule.

[^0]: ${ }^{1}$ When we work out a χ^{2} tail area we don't worry about the form of the distribution we just use the relevant function in our favorite software

