Relaxing the assumptions 00000000

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression

Ken Rice

Department of Biostatistics University of Washington

Bayesian estimation

Relaxing the assumptions

Outline

The linear regression model

Bayesian estimation

Relaxing the assumptions

Regression models

How does an outcome Y vary as a function of $\mathbf{x} = \{x_1, \dots, x_p\}$?

- What are the effect sizes?
- What is the effect of x₁, in observations that have the same x₂, x₃, ...x_p (a.k.a. "keeping these covariates constant")?
- Can we predict Y as a function of x?

These questions can be assessed via a regression model p(y|x).

Relaxing the assumptions 00000000

Regression data

Parameters in a regression model can be estimated from data:

$$\left(\begin{array}{cccc} y_1 & x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots & & \vdots \\ y_n & x_{n,1} & \cdots & x_{n,p} \end{array}\right)$$

These data are often expressed in matrix/vector form:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & \cdots & x_{1,p} \\ \vdots & & \vdots \\ x_{n,1} & \cdots & x_{n,p} \end{pmatrix}$$

 Bayesian estimation

FTO experiment

Relaxing the assumptions

FTO gene is hypothesized to be involved in growth and obesity.

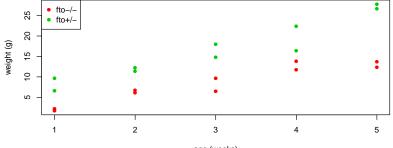
Experimental design:

- 10 *fto* + /- mice
- 10 *fto* /- mice
- Mice are sacrificed at the end of 1-5 weeks of age.
- Two mice in each group are sacrificed at each age.

Bayesian estimation

FTO Data

Relaxing the assumptions



age (weeks)

Relaxing the assumptions 00000000

Data analysis

• y = weight

- $x_g = \text{indicator of fto heterozygote} \in \{0,1\} = \text{number of "+" alleles}$
- *x_a* = age in weeks ∈ {1, 2, 3, 4, 5}

How can we estimate $p(y|x_g, x_a)$?

Cell means model:

genotype	age				
/	$\theta_{0,1}$	$\theta_{0,2}$	$\theta_{0,3}$	$\theta_{0,4}$	$\theta_{0,5}$
+/-	$\theta_{1,1}$	$\theta_{1,2}$	$\theta_{1,3}$	$\theta_{1,4}$	$\theta_{1,5}$

Problem: 10 parameters - only two observations per cell

Relaxing the assumptions

Linear regression

Solution: Assume smoothness as a function of age. For each group,

 $y = \alpha_0 + \alpha_1 x_a + \epsilon$

This is a *linear regression model*. Linearity means "linear in the parameters", i.e. several covariates multiplied by corresponding α and added.

A more complex model might assume e.g.

$$y = \alpha_0 + \alpha_1 x_a + \alpha_2 x_a^2 + \alpha_3 x_a^3 + \epsilon,$$

- but this is still a linear regression model, even with age^2 , age^3 terms.

Bayesian estimation

Relaxing the assumptions

Multiple linear regression

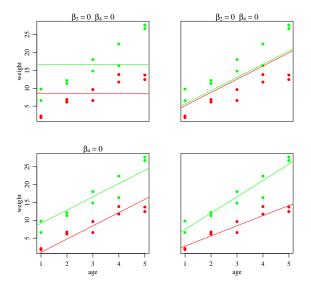
With enough variables, we can describe the regressions for both groups simultaneously:

Note that under this model,

$$\begin{split} \mathrm{E}[\boldsymbol{Y}|\boldsymbol{x}] &= \beta_1 + \beta_3 \times \text{age if } x_2 = 0, \text{ and} \\ \mathrm{E}[\boldsymbol{Y}|\boldsymbol{x}] &= (\beta_1 + \beta_2) + (\beta_3 + \beta_4) \times \text{age if } x_2 = 1. \end{split}$$

Relaxing the assumptions 00000000

Multiple linear regression



Relaxing the assumptions 00000000

Normal linear regression

How does each Y_i vary around its mean $E[Y_i|\beta, x_i]$?

$$Y_i = \boldsymbol{\beta}^T \boldsymbol{x}_i + \epsilon_i$$

 $\epsilon_1, \dots, \epsilon_n \sim \text{ i.i.d. normal}(0, \sigma^2).$

This assumption of Normal errors completely specifies the likelihood:

$$p(y_1,\ldots,y_n|\mathbf{x}_1,\ldots,\mathbf{x}_n,\boldsymbol{\beta},\sigma^2) = \prod_{i=1}^n p(y_i|\mathbf{x}_i,\boldsymbol{\beta},\sigma^2)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \boldsymbol{\beta}^T \mathbf{x}_i)^2\}.$$

Note: in larger sample sizes, analysis is "robust" to the Normality assumption—but we are relying on the mean being linear in the x's, and on the ϵ_i 's variance being constant with respect to x.

 Bayesian estimation

Relaxing the assumptions 00000000

٠

Matrix form

- Let y be the *n*-dimensional column vector $(y_1, \ldots, y_n)^T$;
- Let **X** be the $n \times p$ matrix whose *i*th row is x_i .

Then the normal regression model is that

 $\{\mathbf{y}|\mathbf{X}, \boldsymbol{\beta}, \sigma^2\} \sim \text{ multivariate normal } (\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}),$

where **I** is the $p \times p$ identity matrix and

$$\mathbf{X}\boldsymbol{\beta} = \begin{pmatrix} \mathbf{x}_{1} \rightarrow \\ \mathbf{x}_{2} \rightarrow \\ \vdots \\ \mathbf{x}_{n} \rightarrow \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{p} \end{pmatrix} = \begin{pmatrix} \beta_{1}x_{1,1} + \dots + \beta_{p}x_{1,p} \\ \vdots \\ \beta_{1}x_{n,1} + \dots + \beta_{p}x_{n,p} \end{pmatrix} = \begin{pmatrix} \mathrm{E}[\mathbf{Y}_{1}|\boldsymbol{\beta}, \mathbf{x}_{1}] \\ \vdots \\ \mathrm{E}[\mathbf{Y}_{n}|\boldsymbol{\beta}, \mathbf{x}_{n}] \end{pmatrix}$$

Bayesian estimation

Relaxing the assumptions

Ordinary least squares estimation

What values of β are consistent with our data y, X?

Recall

$$p(\mathbf{y}_1,\ldots,\mathbf{y}_n|\mathbf{x}_1,\ldots,\mathbf{x}_n,\boldsymbol{\beta},\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (\mathbf{y}_i - \boldsymbol{\beta}^T \mathbf{x}_i)^2\}.$$

This is big when $SSR(\beta) = \sum (y_i - \beta^T x_i)^2$ is small.

$$SSR(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^T \boldsymbol{x}_i)^2 = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$
$$= \boldsymbol{y}^T \boldsymbol{y} - 2\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\beta}.$$

What value of β makes this the smallest?

Relaxing the assumptions

Calculus

Recall from calculus that

- 1. a minimum of a function g(z) occurs at a value z such that $\frac{d}{dz}g(z) = 0$;
- 2. the derivative of g(z) = az is a and the derivative of $g(z) = bz^2$ is 2bz.

$$\frac{d}{d\beta} SSR(\beta) = \frac{d}{d\beta} \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} - 2\beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta \right)$$
$$= -2\mathbf{X}^{\mathsf{T}} \mathbf{y} + 2\mathbf{X}^{\mathsf{T}} \mathbf{X} \beta ,$$

Therefore,

$$\frac{d}{d\beta} SSR(\beta) = 0 \quad \Leftrightarrow \quad -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X}\beta = 0$$
$$\Leftrightarrow \quad \mathbf{X}^T \mathbf{X}\beta = \mathbf{X}^T \mathbf{y}$$
$$\Leftrightarrow \quad \beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

 $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ is the Ordinary Least Squares (OLS) estimator of $\boldsymbol{\beta}$.

Relaxing the assumptions

No Calculus

The calculus-free, algebra-heavy version – which relies on knowing the answer in advance!

Writing $\Pi = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$, and noting that $\mathbf{X} = \Pi \mathbf{x}$ and $\mathbf{X} \hat{\boldsymbol{\beta}}_{ols} = \Pi \boldsymbol{y}$;

$$\begin{aligned} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) &= (\mathbf{y} - \Pi\mathbf{y} + \Pi\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \Pi\mathbf{y} + \Pi\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \\ &= ((I - \Pi)\mathbf{y} + \Pi(\hat{\boldsymbol{\beta}}_{\text{ols}} - \boldsymbol{\beta}))^{\mathsf{T}}((I - \Pi)\mathbf{y} + \Pi(\hat{\boldsymbol{\beta}}_{\text{ols}} - \boldsymbol{\beta})) \\ &= \mathbf{y}^{\mathsf{T}}(I - \Pi)\mathbf{y} + (\hat{\boldsymbol{\beta}}_{\text{ols}} - \boldsymbol{\beta})^{\mathsf{T}}\Pi(\hat{\boldsymbol{\beta}}_{\text{ols}} - \boldsymbol{\beta}), \end{aligned}$$

because all the 'cross terms' with Π and $I - \Pi$ are zero.

Hence the value of eta that minimizes the SSR – for a given set of data – is $\hat{eta}_{
m ols}$.

Bayesian estimation

Relaxing the assumptions

OLS estimation in R

```
### OLS estimate
beta.ols <- solve( t(X)%*%X )%*%t(X)%*%y
beta.ols</pre>
```

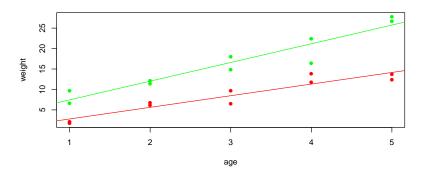
	[,1]
(Intercept)	-0.06821632
xg	2.94485495
xa	2.84420729
xg:xa	1.72947648
	xg xa

```
### using lm
fit.ols <- lm( y~ xg*xa )
coef( summary(fit.ols) )
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06821632 1.4222970 -0.04796208 9.623401e-01
## xg 2.94485495 2.0114316 1.46405917 1.625482e-01
## xa 2.84420729 0.4288387 6.63234803 5.760923e-06
## xg:xa 1.72947648 0.6064695 2.85171239 1.154001e-02
```

Bayesian estimation

Relaxing the assumptions

OLS estimation



coef(summary(fit.ols))

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	-0.06821632	1.4222970	-0.04796208	9.623401e-01
##	xg	2.94485495	2.0114316	1.46405917	1.625482e-01
##	xa	2.84420729	0.4288387	6.63234803	5.760923e-06
##	xg:xa	1.72947648	0.6064695	2.85171239	1.154001e-02

 Relaxing the assumptions 00000000

Bayesian inference for regression models

$$y_i = \beta_1 x_{i,1} + \cdots + \beta_p x_{i,p} + \epsilon_i$$

Motivation:

- Incorporating prior information
- Posterior probability statements: $Pr(\beta_j > 0|y, X)$
- OLS tends to overfit when *p* is large, Bayes' use of prior tends to make it more conservative.
- Model selection and averaging (more later)

Bayesian estimation

Relaxing the assumptions

Prior and posterior distribution

where

$$\begin{split} \boldsymbol{\Sigma}_n &= \operatorname{Var}[\boldsymbol{\beta}|\boldsymbol{y}, \boldsymbol{X}, \sigma^2] \quad = \quad (\boldsymbol{\Sigma}_0^{-1} + \boldsymbol{X}^T \boldsymbol{X} / \sigma^2)^{-1} \\ \boldsymbol{\beta}_n &= \operatorname{E}[\boldsymbol{\beta}|\boldsymbol{y}, \boldsymbol{X}, \sigma^2] \quad = \quad (\boldsymbol{\Sigma}_0^{-1} + \boldsymbol{X}^T \boldsymbol{X} / \sigma^2)^{-1} (\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\beta}_0 + \boldsymbol{X}^T \boldsymbol{y} / \sigma^2). \end{split}$$

Notice:

- If $\Sigma_0^{-1} \ll \mathbf{X}^T \mathbf{X} / \sigma^2$, then $\boldsymbol{\beta}_n \approx \hat{\boldsymbol{\beta}}_{\text{ols}}$
- If $\Sigma_0^{-1} \gg \mathbf{X}^T \mathbf{X} / \sigma^2$, then $\boldsymbol{\beta}_n \approx \boldsymbol{\beta}_0$

Relaxing the assumptions

The g-prior

How to pick β_0, Σ_0 ?

g-prior:

$$\boldsymbol{eta} \sim \mathsf{mvn}(\mathbf{0}, \boldsymbol{g}\sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Idea: The variance of the OLS estimate $\hat{\beta}_{\rm ols}$ is

$$\operatorname{Var}[\hat{\boldsymbol{\beta}}_{ols}] = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} = \frac{\sigma^2}{n} (\mathbf{X}^T \mathbf{X}/n)^{-1}$$

This is roughly the uncertainty in β from *n* observations.

$$\operatorname{Var}[\boldsymbol{\beta}]_{\text{gprior}} = \boldsymbol{g}\sigma^{2}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1} = \frac{\sigma^{2}}{n/g}(\boldsymbol{X}^{T}\boldsymbol{X}/n)^{-1}$$

The *g*-prior can roughly be viewed as the uncertainty from n/g observations. For example, g = n means the prior has the same amount of info as 1 obs.

Bayesian estimation

Relaxing the assumptions 00000000

Posterior distributions under the g-prior

 $\{\boldsymbol{\beta}|\boldsymbol{y}, \boldsymbol{X}, \sigma^2\} \sim \mathsf{mvn}(\boldsymbol{\beta}_n, \boldsymbol{\Sigma}_n)$

$$\begin{split} \boldsymbol{\Sigma}_n &= \operatorname{Var}[\boldsymbol{\beta} | \boldsymbol{y}, \boldsymbol{X}, \sigma^2] \quad = \quad \frac{\boldsymbol{g}}{\boldsymbol{g}+1} \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1} \\ \boldsymbol{\beta}_n &= \operatorname{E}[\boldsymbol{\beta} | \boldsymbol{y}, \boldsymbol{X}, \sigma^2] \quad = \quad \frac{\boldsymbol{g}}{\boldsymbol{g}+1} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \end{split}$$

Notes:

- The posterior mean estimate β_n is simply $\frac{g}{g+1}\hat{\beta}_{ols}$.
- The posterior variance of β is simply $\frac{g}{g+1} \operatorname{Var}[\hat{\beta}_{ols}]$.
- g shrinks the coefficients towards ${f 0}$ and can prevent overfitting to the data
- If g = n, then as n increases, inference approximates that using $\hat{oldsymbol{eta}}_{
 m ols}$.

Relaxing the assumptions 00000000

Monte Carlo simulation

What about the error variance σ^2 ?

where SSR_g is somewhat complicated.

Simulating the joint posterior distribution:

To simulate $\{\sigma^2, \beta\} \sim p(\sigma^2, \beta | \mathbf{y}, \mathbf{X}),$

- 1. First simulate σ^2 from $p(\sigma^2|\mathbf{y}, \mathbf{X})$
- 2. Use this σ^2 to simulate β from $p(\beta|y, \mathbf{X}, \sigma^2)$

Repeat 1000's of times to obtain MC samples: $\{\sigma^2, \beta\}^{(1)}, \dots, \{\sigma^2, \beta\}^{(S)}$.

Bayesian estimation

Relaxing the assumptions

FTO example

Priors:

$$\frac{1/\sigma^2}{\beta|\sigma^2} \sim \operatorname{gamma}(1/2, 3.678/2)$$

$$\beta|\sigma^2 \sim \operatorname{mvn}(\mathbf{0}, \mathbf{g} \times \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

Posteriors:

$$\begin{array}{ll} \{1/\sigma^2 | \mathbf{y}, \mathbf{X}\} & \sim & \mathsf{gamma}((1+20)/2, (3.678+251.775)/2) \\ \{\beta | \mathbf{Y}, \mathbf{X}, \sigma^2\} & \sim & \mathsf{mvn}(.952 \times \hat{\beta}_{\mathsf{ols}}, .952 \times \sigma^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}) \end{array}$$

where

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \begin{pmatrix} 0.55 & -0.55 & -0.15 & 0.15\\ -0.55 & 1.10 & 0.15 & -0.30\\ -0.15 & 0.15 & 0.05 & -0.05\\ 0.15 & -0.30 & -0.05 & 0.10 \end{pmatrix} \quad \hat{\boldsymbol{\beta}}_{\mathsf{ols}} = \begin{pmatrix} -0.068\\ 2.945\\ 2.844\\ 1.729 \end{pmatrix}$$

Bayesian estimation

Relaxing the assumptions 00000000

R-code

```
## data dimensions
n \leq nrow(X)
p <- ncol(X)
## prior parameters
nu0 <- 1
s20 <- summary(fit.ols)$sigma^2</pre>
g <- n
## posterior calculations
Hg <- (g/(g+1)) * X%*%solve(t(X)%*%X)%*%t(X)
SSRg <- t(y)%*%( diag(1,nrow=n) - Hg ) %*%y
Vbeta <- g*solve(t(X)%*%X)/(g+1)</pre>
Ebeta <- Vbeta%*%t(X)%*%y
## simulate sigma^2 and beta
## may need to install the mutnorm package, for rmunorm()
library("mvtnorm")
set.seed(4)
s2.post <- 1/rgamma(5000, (nu0+n)/2, (nu0*s20+SSRg)/2)
beta.post <- t( sapply(s2.post,</pre>
                        function(s2val){rmvnorm(1, Ebeta, s2val*Vbeta)} ) )
```

Relaxing the assumptions

MC approximation to posterior

s2.post[1:5]

[1] 11.940216 15.281855 15.821894 8.062999 10.385588

beta.post[1:5,] ## [,1] [,2] [,3] [,4] ## [1,] -0.05489819 3.215801 2.665482 1.239803 ## [2,] 0.59360414 1.192194 1.669488 2.786377 ## [3,] 2.17538669 -1.425288 2.603455 1.970921 ## [4,] -0.40948831 2.408334 2.709188 2.188037 ## [5,] -1.54836805 5.619917 2.521175 2.044607

Bayesian estimation

Relaxing the assumptions

MC approximation to posterior

```
quantile(s2.post,probs=c(.025,.5,.975))
```

2.5% 50% 97.5% ## 7.244054 12.613746 24.430451

```
quantile(sqrt(s2.post),probs=c(.025,.5,.975))
```

2.5% 50% 97.5% ## 2.691478 3.551584 4.942717

apply(beta.post,2,quantile,probs=c(.025,.5,.975))

 ##
 [,1]
 [,2]
 [,3]
 [,4]

 ##
 2.5%
 -5.29185024
 -4.634095
 1.093548
 -0.5496126

 ##
 50%
 -0.08075528
 2.741002
 2.718905
 1.6539416

 ##
 97.5%
 5.23651756
 10.196441
 4.278274
 3.8928597

Bayesian estimation

Relaxing the assumptions

OLS/Bayes comparison

```
apply(beta.post,2,mean)
```

[1] -0.04687944 2.74716782 2.70816553 1.65028595

```
apply(beta.post,2,sd)
```

[1] 2.6428777 3.7361276 0.7919952 1.1255400

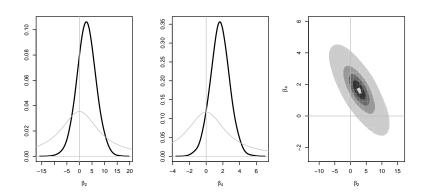
```
coef(summary(fit.ols))
```

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	-0.06821632	1.4222970	-0.04796208	9.623401e-01
##	xg	2.94485495	2.0114316	1.46405917	1.625482e-01
##	xa	2.84420729	0.4288387	6.63234803	5.760923e-06
##	xg:xa	1.72947648	0.6064695	2.85171239	1.154001e-02

Bayesian estimation

Relaxing the assumptions

Posterior distributions



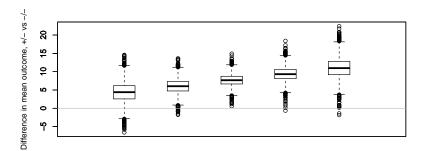
Bayesian estimation

Relaxing the assumptions

Summarizing the genetic effect

Genetic effect =
$$E[y|age, +/-] - E[y|age, -/-]$$

= $[(\beta_1 + \beta_2) + (\beta_3 + \beta_4) \times age] - [\beta_1 + \beta_3 \times age]$
= $\beta_2 + \beta_4 \times age$



Bayesian estimation

Relaxing the assumptions •0000000

What if the model's wrong?

Different types of violation—in decreasing order of how much they typically matter in practice $% \left({{{\left[{{{L_{\rm{p}}} \right]}} \right]}_{\rm{sc}}}} \right)$

- Just have the wrong data (!) i.e. not the data you claim to have
- Observations are not independent, e.g. repeated measures on same mouse over time
- Mean model is incorrect
- Error terms do not have constant variance
- Error terms are not Normally distributed

Bayesian estimation

Relaxing the assumptions 0000000

Dependent observations

- Observations from the same mouse are more likely to be similar than those from different mice (even if they have same age and genotype)
- SBP from subjects (even with same age, genotype etc) in the same family are more likely to be similar than those in different familes perhaps unmeasured common diet?
- Spatial and temporal relationships also tend to induce correlation

If the pattern of relationship is known, can allow for it – typically in "random effects modes" – see later session.

If not, treat results with caution! Precision is likely over-stated.

Relaxing the assumptions

Wrong mean model

Even when the scientific background is highly informative about the variables of interest (e.g. we want to know about the association of Y with x_1 , adjusting for x_2 , x_3 ...) there is rarely strong information about the form of the model

- Does mean weight increase with age? age²? age³?
- Could the effect of genotype also change non-linearly with age?

Including quadratic terms is a common approach – but quadratics are sensitive to the tails. Instead, including "spline" representations of covariates allows the model to capture many patterns.

Including interaction terms (as we did with $x_{i,2} \times x_{i,3}$) lets one covariate's effect vary with another.

(Deciding which covariates to use is addressed in the Model Choice session.)

Relaxing the assumptions

Non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to measure, i.e. more variables. Or perhaps the FTO variant affects weight regulation — again, more variance.

- Having different variances at different covariate values is known as *heteroskedasticity*
- Unaddressed, it can result in over- or under-statement of precision

The most obvious approach is to model the variance, i.e.

$$\begin{array}{rcl} Y_i &=& \boldsymbol{\beta}^T \boldsymbol{x}_i + \boldsymbol{\epsilon}_i, \\ \boldsymbol{\epsilon}_i &\sim & \operatorname{Normal}(\boldsymbol{0}, \sigma_i^2), \end{array}$$

where σ_i depends on covariates, e.g. σ_{homozy} and $\sigma_{heterozy}$ for the two genotypes. Of course, these parameters need priors. Constraining variances to be positive also makes choosing a model difficult in practice.

Relaxing the assumptions

Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or non-constant variance is available – but it relies on interest in linear 'trends'. Formally, we can define parameter

$$\boldsymbol{\theta} = \operatorname{argmin} \boldsymbol{E}_{y,x} \left[\left(\boldsymbol{E}_{y}[y|x] - \mathbf{x}^{t} \boldsymbol{\theta} \right)^{2} \right],$$

i.e. the straight line that best-captures random-sampling, in a least-squares sense.

- This 'trend' can capture important features in how the mean \boldsymbol{y} varies at different \boldsymbol{x}
- Fitting extremely flexible Bayesian models, we get a posterior for heta
- The posterior mean approaches $\hat{oldsymbol{eta}}_{\mathrm{ols}}$, in large samples
- The posterior variance approaches the 'robust' *sandwich estimate*, in large samples (details in Szpiro et al, 2011)

Relaxing the assumptions 00000000

Robust standard errors

The OLS estimator can be written as $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \sum_{i=1}^n c_i y_i$, for appropriate c_i .

 $\begin{array}{rcl} \mathbf{True} \text{ variance} & \operatorname{Var}[\hat{\beta}] &=& \sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}[Y_{i}] \\ \mathbf{Robust} \text{ estimate} & \widehat{\operatorname{Var}}_{R}[\hat{\beta}] &=& \sum_{i=1}^{n} c_{i}^{2} e_{i}^{2} \\ \mathbf{Model-based} \text{ estimate} & \widehat{\operatorname{Var}}_{M}[\hat{\beta}] &=& \operatorname{Mean}(e_{i}^{2}) \sum_{i=1}^{n} c_{i}^{2}, \end{array}$

where $e_i = y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}_{ols}$, the residuals from fitting a linear model.

Non-Bayesian sandwich estimates are available through R's sandwich package – much quicker than Bayes with a very-flexible model. For correlated outcomes, see the GEE package for generalizations.

Relaxing the assumptions

Non-Normality

This is not a big problem for learning about population parameters;

- The variance statements/estimates we just saw don't rely on Normality
- The central limit theorem means that $\hat{oldsymbol{eta}}$ ends up Normal anyway, in large samples
- In small samples, expect to have limited power to detect non-Normality
- ... except, perhaps, for extreme outliers (data errors?)

For prediction – where we assume that outcomes do follow a Normal distibution – this assumption is more important.

Bayesian estimation

Relaxing the assumptions

- Linear regressions are of great applied interest
- Corresponding models are easy to fit, particularly with judicious prior choices
- Assumptions are made but a well-chosen linear regression usually tells us something of interest, even if the assumptions are (mildly) incorrect