2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling

Jon Wakefield
Departments of Statistics and Biostatistics
University of Washington

Outline

Introduction and Motivating Example

Bayesian Analysis of Binomial Data
The Beta Prior
Bayes Factors

Analysis of ASE Data

Conclusions

Introduction

- In this lecture we will continue to consider the Bayesian modeling of binomial data.
- The analysis of allele specific expression data will be used to motivate the binomial model.
- Conjugate priors will be introduced.
- Sampling from the posterior will be emphasized as a method for flexible inference.

Bayes Theorem Recap

- We derive the posterior distribution via Bayes theorem:

$$
p(\theta \mid y)=\frac{\operatorname{Pr}(y \mid \theta) \times p(\theta)}{\operatorname{Pr}(y)}
$$

- The denominator:

$$
\operatorname{Pr}(y)=\int \operatorname{Pr}(y \mid \theta) \times p(\theta) d \theta
$$

is a normalizing constant to ensure the RHS integrates to 1 .

- More colloquially:

$$
\begin{aligned}
\text { Posterior } & \propto \text { Likelihood } \times \text { Prior } \\
& =\operatorname{Pr}(y \mid \theta) \times p(\theta)
\end{aligned}
$$

since in considering the posterior we only need to worry about terms that depend on the parameter θ.

Overview of Bayesian Inference

- Simply put, to carry out a Bayesian analysis one must specify a likelihood (probability distribution for the data) and a prior (beliefs about the parameters of the model).
- The approach is therefore model-based, in contrast to approaches in which only the mean and the variance of the data are specified (e.g. weighted least squares).
- To carry out inference, integration is required, and a large fraction of the Bayesian research literature focusses on this aspect.
- Bayesian summaries:

1. Estimation: marginal posterior distributions on parameters of interest.
2. Hypothesis Testing: Bayes factors giving the evidence in the data with respect to two or more hypotheses.
3. Prediction: via the predictive distribution.

- These three objectives will now be described in the context of a binomial model.

Elements of Bayes Theorem for a Binomial Model

- We assume independent responses with a common "success" probability θ.
- In this case, the contribution of the data is through the binomial probability distribution:

$$
\begin{equation*}
\operatorname{Pr}(Y=y \mid \theta)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y} \tag{1}
\end{equation*}
$$

and tells us the probability of seeing $Y=y, y=0,1, \ldots, N$ given the probability θ.

- For fixed y, we may view (1) as a function of θ - this is the likelihood function.
- The maximum likelihood estimate (MLE) is that value

$$
\widehat{\theta}=y / n
$$

that gives the highest probability to the observed data, i.e. maximizes the likelihood function.

Figure 1: Binomial distributions for two values of θ with $N=10$.

Figure 2: Binomial likelihoods for values of $y=5$ (left) and $y=10$ (right), with $N=10$. The MLEs are indicated in red.

The Beta Distribution as a Prior Choice for a Binomial θ

- Bayes theorem requires the likelihood, which we have already specified as binomial, and the prior.
- For a probability $0<\theta<1$ an obvious candidate prior is the uniform distribution on $(0,1)$: but this is too restrictive in general.
- The beta distribution, beta (a, b), is more flexible and so may be used for θ, with a and b specified in advance. The uniform distribution is a special case with $a=b=1$.
- The form of the beta distribution is

$$
p(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}
$$

for $0<\theta<1$, where $\Gamma(\cdot)$ is the gamma function ${ }^{1}$.

- The distribution is valid ${ }^{2}$ for $a>0, b>0$.

[^0]
The Beta Distribution as a Prior Choice for a Binomial θ

- How can we think about specifying a and b ?
- For the normal distribution the parameters μ and σ^{2} are just the mean and variance, but for the beta distribution a and b have no such simple interpretation.
- The mean and variance are:

$$
\begin{aligned}
\mathrm{E}[\theta] & =\frac{a}{a+b} \\
\operatorname{var}(\theta) & =\frac{\mathrm{E}[\theta](1-\mathrm{E}[\theta])}{a+b+1}
\end{aligned}
$$

Hence, increasing a and/or b concentrates the distribution about the mean.

- The quantiles, e.g. the median or the 10% and 90% points, are not available as a simple formula, but are easily obtained within software such as R using the function qbeta (p, a, b).

Figure 3: Beta distributions, beta (a, b), the red lines indicate the means.

Samples to Summarize Beta Distributions

- Probability distributions can be investigated by generating samples and then examining histograms, moments and quantiles.
- In Figure 4 we show histograms of beta distributions for different choices of a and b.

Figure 4: Random samples from beta distributions; sample means as red lines.

Samples for Describing Weird Parameters

- So far the samples we have generated have produced summaries we can easily obtain anyway.
- But what about functions of the probability θ, such as the odds $\theta /(1-\theta)$?
- Once we have samples for θ we can simply transform the samples to the functions of interest.
- We may have clearer prior opinions about the odds, than the probability.
- The histogram representation of the prior on the odds $\theta /(1-\theta)$ when θ is beta $(10,10)$.

Odds with θ from a beta(10,10)

Figure 5: Samples from the prior on the odds $\theta /(1-\theta)$ with $\theta \sim \operatorname{beta}(10,10)$, the red line indicates the sample mean.

Issues with Uniformity

We might think that if we have little prior opinion about a parameter then we can simply assign a uniform prior, i.e. a prior

$$
p(\theta) \propto \text { const. }
$$

There are two problems with this strategy:

- We can't be uniform on all scales since, if $\phi=g(\theta)$:

and so if $g(\cdot)$ is a nonlinear function, the Jacobian will be a function of ϕ and hence not uniform.
- If the parameter is not on a finite range, an improper distribution will result (that is, the form will not integrate to 1). This can lead to an improper posterior distribution, and without a proper posterior we can't do inference.

Are Priors Really Uniform?

- We illustrate the first (non-uniform on all scales) point.
- In the binomial example a uniform prior for θ seems a natural choice.
- But suppose we are going to model on the logistic scale so that

$$
\phi=\log \left(\frac{\theta}{1-\theta}\right)
$$

is a quantity of interest.

- A uniform prior on θ produces the very non-uniform distribution on ϕ in Figure 6.
- Not being uniform on all scales is not necessarily a problem, and is correct probabilistically, but one should be aware of this characteristic.

Log Odds with Θ from a beta(1,1)

Figure 6: Samples from the prior on the odds $\phi=\log [\theta /(1-\theta)]$ with $\theta \sim \operatorname{beta}(1,1)$, the red line indicates the sample mean.

Posterior Derivation: The Quick Way

- When we want to identify a particular probability distribution we only need to concentrate on terms that involve the random variable.
- For example, if the random variable is x and we see a density of the form

$$
p(x) \propto \exp \left(c_{1} x^{2}+c_{2} x\right)
$$

for constants c_{1} and c_{2}, then we know x must have a normal distribution.

Posterior Derivation: The Quick Way

- For the binomial-beta model we concentrate on terms that only involve θ.
- The posterior is

$$
\begin{aligned}
p(\theta \mid y) & \propto \operatorname{Pr}(y \mid \theta) \times p(\theta) \\
& =\theta^{y}(1-\theta)^{N-y} \times \theta^{a-1}(1-\theta)^{b-1} \\
& =\theta^{y+a-1}(1-\theta)^{N-y+b-1}
\end{aligned}
$$

- We recognize this as the important part of a beta $(y+a, N-y+b)$ distribution.
- We know what the normalizing constant must be, because we have a distribution which must integrate to 1 .

Posterior Derivation: The Long (and Unnecessary) Way

- The posterior can also be calculated by keeping in all the normalizing constants:

$$
\begin{align*}
p(\theta \mid y) & =\frac{\operatorname{Pr}(y \mid \theta) \times p(\theta)}{\operatorname{Pr}(y)} \\
& =\frac{1}{\operatorname{Pr}(y)}\binom{N}{y} \theta^{y}(1-\theta)^{N-y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} \tag{2}
\end{align*}
$$

- The normalizing constant is

$$
\begin{aligned}
\operatorname{Pr}(y) & =\int_{0}^{1} \operatorname{Pr}(y \mid \theta) \times p(\theta) d \theta \\
& =\binom{N}{y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \int_{0}^{1} \theta^{y+a-1}(1-\theta)^{N-y+b-1} d \theta \\
& =\binom{N}{y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(y+a) \Gamma(N-y+b)}{\Gamma(N+a+b)}
\end{aligned}
$$

- The integrand on line 2 is a $\operatorname{beta}(y+a, N-y+b)$ distribution, up to a normalizing constant, and so we know what this constant has to be.

Posterior Derivation: The Long (and Unnecessary) Way

- The normalizing constant is therefore:

$$
\operatorname{Pr}(y)=\binom{N}{y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(y+a) \Gamma(N-y+b)}{\Gamma(N+a+b)}
$$

- This is a probability distribution, i.e. $\sum_{y=0}^{N} \operatorname{Pr}(y)=1$ with $\operatorname{Pr}(y)>0$.
- For a particular y value, this expression tells us the probability of that value given the model, i.e. the likelihood and prior we have selected: this will reappear later in the context of hypothesis testing.
- Substitution of $\operatorname{Pr}(y)$ into (2) and canceling the terms that appear in the numerator and denominator gives the posterior:

$$
p(\theta \mid y)=\frac{\Gamma(N+a+b)}{\Gamma(y+a) \Gamma(N-y+b)} \theta^{y+a-1}(1-\theta)^{N-y+b-1}
$$

which is a $\operatorname{beta}(y+a, N-y+b)$.

The Posterior Mean: A Summary of the Posterior

- Recall the mean of a beta (a, b) is $a /(a+b)$.
- The posterior mean of a $\operatorname{beta}(y+a, N-y+b)$ is therefore

$$
\begin{aligned}
\mathrm{E}[\theta \mid y] & =\frac{y+a}{N+a+b} \\
& =\frac{y}{N+a+b}+\frac{a}{N+a+b} \\
& =\frac{y}{N} \times \frac{N}{N+a+b}+\frac{a}{a+b} \times \frac{a+b}{N+a+b} \\
& =\text { MLE } \times \mathrm{W}+\text { Prior Mean } \times(1-\mathrm{W}) .
\end{aligned}
$$

- The weight W is

$$
\mathrm{W}=\frac{N}{N+a+b}
$$

- As N increases, the weight tends to 1 , so that the posterior mean gets closer and closer to the MLE.
- Notice that the uniform prior $a=b=1$ gives a posterior mean of

$$
\mathrm{E}[\theta \mid y]=\frac{y+1}{N+2}
$$

The Posterior Mode

- First, note that the mode of a beta (a, b) is

$$
\operatorname{mode}(\theta)=\frac{a-1}{a+b-2}
$$

- As with the posterior mean, the posterior mode takes a weighted form:

$$
\begin{aligned}
\operatorname{mode}(\theta \mid y) & =\frac{y+a-1}{N+a+b-2} \\
& =\frac{y}{N} \times \frac{N}{N+a+b-2}+\frac{a-1}{a+b-2} \times \frac{a+b-2}{N+a+b-2} \\
& =\text { MLE } \times \mathrm{W}^{\star}+\text { Prior Mode } \times\left(1-\mathrm{W}^{\star}\right)
\end{aligned}
$$

- The weight W^{\star} is

$$
\mathrm{W}^{\star}=\frac{N}{N+a+b-2}
$$

- Notice that the uniform prior $a=b=1$ gives a posterior mode of

$$
\operatorname{mode}(\theta \mid y)=\frac{y}{N}
$$

the MLE. Which makes sense, right?

Other Posterior Summaries

- We will rarely want to report a point estimate alone, whether it be a posterior mean or posterior median.
- Interval estimates are obtained in the obvious way.
- A simple way of performing testing of particular parameter values of interest is via examination of interval estimates.
- For example, does a 95% interval contain the value $\theta_{0}=0$?

Other Posterior Summaries

- In our beta-binomial running example, a 90% posterior credible interval $\left(\theta_{L}, \theta_{U}\right)$ results from the points

$$
\begin{aligned}
0.05 & =\int_{0}^{\theta_{L}} p(\theta \mid y) d \theta \\
0.95 & =\int_{0}^{\theta_{U}} p(\theta \mid y) d \theta
\end{aligned}
$$

- The quantiles of a beta are not available in closed form, but easy to evaluate in R :

```
y <- 7; N <- 10; a <- b <- 1
qbeta(c(0.05,0.5,0.95),y+a,N-y+b)
[1] 0.4356258 0.6761955 0.8649245
```

- The 90% credible interval is $(0.44,0.86)$ and the posterior median is 0.68 .

Prior Sensitivity

- For small datasets in particular it is a good idea to examine the sensitivity of inference to the prior choice, particularly for those parameters for which there is little information in the data.
- An obvious way to determine the latter is to compare the prior with the posterior, but experience often aids the process.
- Sometimes one may specify a prior that reduces the impact of the prior.
- In some situations, priors can be found that produce point and interval estimates that mimic a standard non-Bayesian analysis, i.e. have good frequentist properties.
- Such priors provide a baseline to compare analyses with more substantive priors.
- Other names for such priors are objective, reference and non-subjective.
- We now describe another approach to specification, via subjective priors.

Choosing a Prior, Approach One

- To select a beta, we need to specify two quantities, a and b.
- The posterior mean is

$$
\mathrm{E}[\theta \mid y]=\frac{y+a}{N+a+b} .
$$

- Viewing the denominator as a sample size suggests a method for choosing a and b within the prior.
- We need to specify two numbers, but rather than a and b, which are difficult to interpret, we may specify the mean $m_{\text {pior }}=a /(a+b)$ and the prior sample size $N_{\text {prior }}=a+b$
- We then solve for a and b via

$$
\begin{aligned}
a & =N_{\text {prior }} \times m_{\text {prior }} \\
b & =N_{\text {prior }} \times\left(1-m_{\text {prior }}\right)
\end{aligned}
$$

- Intuition: a is like a prior number of successes and b like the prior number of failures.

Choosing a Prior, Approach One

An Example:

- Suppose we set $N_{\text {prior }}=5$ and $m_{\text {prior }}=\frac{2}{5}$. It is as if we saw 2 successes out of 5 .
- Suppose we obtain data with $N=10$ and $\frac{y}{N}=\frac{7}{10}$.
- Hence $W=10 /(10+5)$ and

$$
\begin{aligned}
\mathrm{E}[\theta \mid y] & =\frac{7}{10} \times \frac{10}{10+5}+\frac{2}{5} \times \frac{5}{10+5} \\
& =\frac{9}{15}=\frac{3}{5}
\end{aligned}
$$

- Solving:

$$
\begin{aligned}
& a=N_{\text {prior }} \times m_{\text {prior }}=\quad 5 \times \frac{2}{5}=2 \\
& b=N_{\text {prior }} \times\left(1-m_{\text {prior }}\right)=5 \times \frac{3}{5}=3
\end{aligned}
$$

- This gives a beta $(y+a, N-y+b)=\operatorname{beta}(7+2,3+3)$ posterior.

Beta Prior, Likelihood and Posterior

Figure 7: The prior is beta(2,3) the likelihood is proportional to a $\operatorname{binomial}(7,3)$ and the posterior is beta $(7+2,3+3)$.

Choosing a Prior, Approach Two

- An alternative convenient way of choosing a and b is by specifying two quantiles for θ with associated (prior) probabilities.
- For example, we may wish $\operatorname{Pr}(\theta<0.1)=0.05$ and $\operatorname{Pr}(\theta>0.6)=0.05$.
- The values of a and b may be found numerically.
- For example, we may solve

$$
\begin{equation*}
\left[p_{1}-\operatorname{Pr}\left(\theta<q_{1} \mid a, b\right)\right]^{2}+\left[p_{2}-\operatorname{Pr}\left(\theta<q_{2} \mid a, b\right)\right]^{2}=0 \tag{3}
\end{equation*}
$$

for a, b.

Beta Prior Choice via Quantile Specification

Figure $8:$ beta(2.73,5.67) prior with 5% and 95% quantiles highlighted.

Bayesian Sequential Updating

- We show how probabilistic beliefs are updated as we receive more data.
- Suppose the data arrives sequentially via two experiments:

1. Experiment 1: $\left(y_{1}, N_{1}\right)$.
2. Experiment 2: $\left(y_{2}, N_{2}\right)$.

- Prior 1: $\theta \sim \operatorname{beta}(a, b)$.
- Likelihood 1: $y_{1} \mid \theta \sim \operatorname{binomial}\left(N_{1}, \theta\right)$.
- Posterior 1: $\theta \mid y_{1} \sim \operatorname{beta}\left(a+y_{1}, b+N_{1}-y_{1}\right)$.
- This posterior forms the prior for experiment 2.
- Prior 2: $\theta \sim \operatorname{beta}\left(a^{\star}, b^{\star}\right)$ where $a^{\star}=a+y_{1}, b^{\star}=b+N_{1}-y_{1}$.
- Likelihood 2: $y_{2} \mid \theta \sim \operatorname{binomial}\left(N_{2}, \theta\right)$.
- Posterior 2: $\theta \mid y_{1}, y_{2} \sim \operatorname{beta}\left(a^{\star}+y_{2}, b^{\star}+N_{2}-y_{2}\right)$.
- Substituting for a^{\star}, b^{\star} :

$$
\theta \mid y_{1}, y_{2} \sim \operatorname{beta}\left(a+y_{1}+y_{2}, b+N_{1}-y_{1}+N_{2}-y_{2}\right)
$$

Bayesian Sequential Updating

- Schematically:

$$
(a, b) \rightarrow\left(a+y_{1}, b+N_{1}-y_{1}\right) \rightarrow\left(a+y_{1}+y_{2}, b+N_{1}-y_{1}+N_{2}-y_{2}\right)
$$

- Suppose we obtain the data in one go as $y^{\star}=y_{1}+y_{2}$ successes from $N^{\star}=N_{1}+N_{2}$ trials.
- The posterior is

$$
\theta \mid y^{\star} \sim \operatorname{beta}\left(a+y^{\star}, b+N^{\star}-y^{\star}\right)
$$

which is the same as when we receive in two separate instances.

Predictive Distribution

- Suppose we see y successes out of N trials, and now wish to obtain a predictive distribution for a future experiment with M trials.
- Let $Z=0,1, \ldots, M$ be the number of successes.
- Predictive distribution:

$$
\begin{aligned}
\operatorname{Pr}(z \mid y) & =\int_{0}^{1} p(z, \theta \mid y) d \theta \\
& =\int_{0}^{1} \operatorname{Pr}(z \mid \theta, y) p(\theta \mid y) d \theta \\
& =\int_{0}^{1} \operatorname{Pr}(z \mid \theta) p(\theta \mid y) d \theta
\end{aligned}
$$

because of conditional independence.

Predictive Distribution

- Continuing with the calculation:

$$
\begin{aligned}
\operatorname{Pr}(z \mid y) & =\int_{0}^{1} \operatorname{Pr}(z \mid \theta) \times p(\theta \mid y) d \theta \\
& =\int_{0}^{1}\binom{M}{z} \theta^{z}(1-\theta)^{M-z} \\
& \times \frac{\Gamma(N+a+b)}{\Gamma(y+a) \Gamma(N-y+b)} \theta^{y+a-1}(1-\theta)^{N-y+b-1} d \theta \\
& =\binom{M}{z} \frac{\Gamma(N+a+b)}{\Gamma(y+a) \Gamma(N-y+b)} \int_{0}^{1} \theta^{y+a+z-1}(1-\theta)^{N-y+b+M-z-1} d \theta \\
& =\binom{M}{z} \frac{\Gamma(N+a+b)}{\Gamma(y+a) \Gamma(N-y+b)} \frac{\Gamma(a+y+z) \Gamma(b+N-y+M-z)}{\Gamma(a+b+N+M)}
\end{aligned}
$$

for $z=0,1, \ldots, M$.

- A likelihood approach would take the predictive distribution as $\operatorname{binomial}(M, \widehat{\theta})$ with $\widehat{\theta}=y / N$.

Predictive Distribution

Figure 9: Likelihood and Bayesian predictive distribution of seeing $z=0,1, \ldots, M=10$ successes, after observing $y=2$ out of $N=20$ successes (with $a=b=1$).

Predictive Distribution

- The posterior and sampling distributions won't usually combine so conveniently.
- In general, we may form a Monte Carlo estimate of the predictive distribution:

$$
\begin{aligned}
p(z \mid y) & =\int p(z \mid \theta) p(\theta \mid y) d \theta \\
& =\mathrm{E}_{\theta \mid y}[p(z \mid \theta)] \\
& \approx \frac{1}{S} \sum_{s=1}^{S} p\left(z \mid \theta^{(s)}\right)
\end{aligned}
$$

where $\theta^{(s)} \sim p(\theta \mid y), s=1, \ldots, S$, is a sample from the posterior.

- This provides an estimate of the distribution at the point z.
- Alternatively, we may sample from $p\left(z \mid \theta^{(s)}\right)$ a large number of times to reconstruct the predictive distribution.

Difference in Binomial Proportions

- It is straightforward to extend the methods presented for a single binomial sample to a pair of samples.
- Suppose we carry out two binomial experiments:

$$
\begin{array}{ll}
Y_{1} \mid \theta_{1} \sim \operatorname{binomial}\left(N_{1}, \theta_{1}\right) & \text { for sample } 1 \\
Y_{2} \mid \theta_{2} \sim \operatorname{binomial}\left(N_{2}, \theta_{2}\right) & \text { for sample } 2
\end{array}
$$

- Interest focuses on $\theta_{1}-\theta_{2}$, and often in examing the possibitlity that $\theta_{1}=\theta_{2}$.
- With a sampling-based methodology, and independent beta priors on θ_{1} and θ_{2}, it is straightforward to examine the posterior $p\left(\theta_{1}-\theta_{1} \mid y_{1}, y_{2}\right)$.

Difference in Binomial Proportions

- Savage et al. (2008) give data on allele frequencies within a gene that has been linked with skin cancer.
- It is interest to examine differences in allele frequencies between populations.
- We examine one SNP and extract data on Northern European (NE) and United States (US) populations.
- Let θ_{1} and θ_{2} be the allele frequencies in the NE and US population from which the samples were drawn, respectively.
- The allele frequencies were 10.69% and 13.21% with sample sizes of 650 and 265 , in the NE and US samples, respectively.
- We assume independent beta $(1,1)$ priors on each of θ_{1} and θ_{2}.
- The posterior probability that $\theta_{1}-\theta_{2}$ is greater than 0 , is 0.12 , so there is little evidence of a difference in allele frequencies between the NE and US samples.

Binomial Two Sample Example

Figure 10: Histogram representations of $p\left(\theta_{1} \mid y_{1}\right), p\left(\theta_{2} \mid y_{2}\right)$ and $p\left(\theta_{1}-\theta_{2} \mid y_{1}, y_{2}\right)$. The red line in the right plot is at the reference point of zero.

Bayes Factors for Hypothesis Testing

- The Bayes factor provides a summary of the evidence for a particular hypothesis (model) as compared to another.
- The Bayes factor is

$$
\mathrm{BF}=\frac{\operatorname{Pr}\left(y \mid H_{0}\right)}{\operatorname{Pr}\left(y \mid H_{1}\right)}
$$

and so is simply the probability of the data under H_{0} divided by the probability of the data under H_{1}.

- Values of BF >1 favor H_{0} while values of $B F<1$ favor H_{1}.
- Note the similarity to the likelihood ratio

$$
\mathrm{LR}=\frac{\operatorname{Pr}\left(y \mid H_{0}\right)}{\operatorname{Pr}(y \mid \widehat{\theta})}
$$

where $\widehat{\theta}$ is the MLE under H_{1}.

- If there are no unknown parameters in H_{0} and H_{1} (for example, $H_{0}: \theta=0.5$ versus $H_{1}: \theta=0.3$), then the Bayes factor is identical to the likelihood ratio.

Calibration of Bayes Factors

- Kass and Raftery (1995) suggest intervals of Bayes factors for reporting:

$1 /$ Bayes Factor	Evidence Against H_{0}
1 to 3.2	Not worth more than a bare mention
3.2 to 20	Positive
20 to 150	Strong
>150	Very strong

- These provide a guideline, but should not be followed without question.

Bayes Factors for Binomial Data

An Example:

- For each gene in the ASE dataset we may be interested in $H_{0}: \theta=0.5$ versus $H_{1}: \theta \neq 0.5$.
- The numerator and denominator of the Bayes factor are:

$$
\begin{aligned}
\operatorname{Pr}\left(y \mid H_{0}\right) & =\binom{N}{y} 0.5^{y} 0.5^{N-y} \\
\operatorname{Pr}\left(y \mid H_{1}\right) & =\int_{0}^{1}\binom{N}{y} \theta^{y}(1-\theta)^{N-y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} d \theta \\
& =\binom{N}{y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(y+a) \Gamma(N-y+b)}{\Gamma(N+a+b)}
\end{aligned}
$$

- We have already seen the denominator calculation, when we normalized the posterior.

Values Taken by the Negative Log Bayes Factor, as a Function of y

Figure 11: Negative Log Bayes factor as a function of $y \mid \theta \sim \operatorname{Binomial}(20, \theta)$ for $y=0,1, \ldots, 20$ and $a=b=1$. High values indicate evidence against the null.

Bayesian Analysis of the ASE Data

Three approaches to inference:

1. Posterior Probabilities:

- A simple approach to testing is to calculate the posterior probability that $\theta<0.5$.
- We can then pick a threshold for indicating worthy of further study, e.g. if $\operatorname{Pr}(\theta<0.5 \mid y)<0.01$ or $\operatorname{Pr}(\theta<0.5 \mid y)<0.99$

2. Bayes Factors:

- Calculating the Bayes factor.
- Pick a threshold for indicating worthy of further study, e.g. if the Bayes factor is greater than 150.

3. Decision theory:

- Place priors on the null and alternative hypotheses.
- Calculate the posterior odds:

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(H_{0} \mid y\right)}{\operatorname{Pr}\left(H_{1} \mid y\right)} & =\frac{\operatorname{Pr}\left(y \mid H_{0}\right)}{\operatorname{Pr}\left(y \mid H_{1}\right)} \times \frac{\operatorname{Pr}\left(H_{0}\right)}{\operatorname{Pr}\left(H_{1}\right)} \\
\text { Posterior Odds } & =\text { Bayes Factor } \times \text { Prior Odds }
\end{aligned}
$$

- Pick a threshold R , so that if the Posterior Odds $<\mathrm{R}$ we choose H_{1}.

Bayesian Analysis of the ASE Data

- In Figure 12 we give a histogram of the posterior probabilities $\operatorname{Pr}(\theta<0.5 \mid y)$ and we see large numbers of genes have probabilities close to 0 and 1 , indicating allele specific expression (ASE).
- In Figure 13 we plot $\operatorname{Pr}(\theta<0.5 \mid y)$ versus the p -values and the general pattern is what we would expect - small p-values have posterior probabilities close to 0 and 1.
- The strange lines in this plot are due to the discreteness of the outcome y.
- In Figure 14 we plot the -Log Bayes Factor against $\operatorname{Pr}(\theta<0.5 \mid y)$. Large values of the former correspond to strong evidence of ASE; again we see an aggreement in inference, with large values of the negative log Bayes factor corresponding with $\operatorname{Pr}(\theta<0.5 \mid y)$ close to 0 and 1 .

Figure 12 : Histogram of 4,844 posterior probabilities of $\theta<0.5$.

Figure 13: Posterior probabilities of $\theta<0.5$ and p-values from exact tests.

Figure 14: Negative Log Bayes factor versus posterior probabilities of $\theta<0.5$.

ASE Example

- Applying a Bonferroni correction to control the family wise error rate at 0.05 , gives a p-value threshold of $0.05 / 4844=10^{-5}$ and 111 rejections. More on this later!
- There were 278 genes with $\operatorname{Pr}(\theta<0.5 \mid y)<0.01$ and 242 genes with $\operatorname{Pr}(\theta<0.5 \mid y)>0.99$.
- Following the guideline of requiring very strong evidence, there were 197 genes with the Bayes factor greater than 150.
- Requiring less stringent evidence, i.e. strong only, there were 359 genes.
- We consider a formal decision theory approach to testing in Lecture 7.

ASE Output Data

- Below are some summaries from the ASE analysis - we order with respect to the variable logBFr, which is the reciprocal Bayes factor (so that high numbers correspond to strong evidence against the null).
- The postprob variable is the posterior probability of $\theta<0.5$.

	Nsum	ysum	pvals	postprob	logBFr
4751	437	6	$5.340324 \mathrm{e}-119$	$1.000000 \mathrm{e}+00$	267.9572
4041	625	97	$1.112231 \mathrm{e}-72$	$1.000000 \mathrm{e}+00$	161.1355
2370	546	468	$8.994944 \mathrm{e}-69$	$2.621622 e-69$	152.2517
2770	256	245	$1.127211 \mathrm{e}-58$	$2.943484 \mathrm{e}-59$	129.6198
2291	150	150	$1.401298 \mathrm{e}-45$	$3.503246 \mathrm{e}-46$	99.9548
1328	228	19	$1.224323 \mathrm{e}-41$	$1.000000 \mathrm{e}+00$	90.5573
tail (orderallvals)					
	Nsum	ysum	pvals pos	stprob logB	Fr
824	761	382	0.94221030 .45	567334 -2.086	64
2163	776	390	$0.9142477 \quad 0.44$	$429539-2.0919$	955
3153	769	384	$1.0000000 \quad 0.51$	$143722-2.0970$	079
2860	1076	546	0.64748780 .31	$129473-2.146$	555
2028	1440	707	0.51003310 .75	532969-2.176	356
395	1123	555	0.72029380 .65	$508932-2.2115$	76

Conclusions

- Monte Carlo sampling provides flexibility of inference.
- All this lecture considered Binomial sampling, for which there is only a single parameter. For more parameters, prior specification and computing becomes more interesting...as we shall see.
- Multiple testing is considered in Lecture 7.
- For estimation and with middle to large sample sizes, conclusions from Bayesian and non-Bayesian approaches often coincide.
- For testing it is a different story, as discussed in Lecture 7.

Conclusions

Benefits of a Bayesian approach:

- Inference is based on probability and output is very intuitive.
- Framework is flexible, and so complex models can be built.
- Can incorporate prior knowledge!
- If the sample size is large, prior choice is less crucial.

Challenges of a Bayesian analysis:

- Require a likelihood and a prior, and inference is only as good as the appropriateness of these choices.
- Computation can be daunting, though software is becoming more user friendly and flexible (later we will use INLA).
- One should be wary of model becoming too complex - we have the technology to contemplate complicated models, but do the data support complexity?

References

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795.
Savage, S. A., Gerstenblith, M. R., Goldstein, A., Mirabello, L., Fargnoli, M. C., Peris, K., and Landi, M. T. (2008). Nucleotide diversity and population differentiation of the melanocortin 1 receptor gene, MC1R. BMC Genetics, 9, 31.
Skelly, D., Johansson, M., Madeoy, J., Wakefield, J., and Akey, J. (2011). A powerful and flexible statistical framework for testing hypothesis of allele-specific gene expression from RNA-Seq data. Genome Research, 21, 1728-1737.

[^0]: ${ }^{1} \Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} d t$
 ${ }^{2} \mathrm{~A}$ distribution is valid if it is non-negative and integrates to 1

