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Introduction

• In this lecture we consider three topics.

• First, we consider methods for imputation of missing genotypes.

• We describe a number of the more common Bayesian approaches to this
problem.

• Second, we will briefly review a number of procedures to carry out model
comparison.
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Motivation for Imputation

• Imputation is the prediction of missing genotypes.

• Imputation is used in both GWAS and in fine-mapping studies.

• The technique is becoming increasingly popular since it can:
• Increase power in GWAS.
• Facilitate meta-analysis in which it is required to combine information from

different panels which have different sets of SNPs. In this way power can be
increased.

• Fine-map causal variants, see Figure 1. Imputed SNPs that show large
associations can be better candidates for replication studies.

• The key idea in the approaches we describe is the use of data on
haplotypes from a relevant population to build a prior model for the
missing data, basically the models leverage linkage disequilibrium.
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Figure 1 : Imputation for the TCF7L2 gene, from Marchini et al. (2007). Imputed
SNP signals are in red and observed SNPs in black.
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Figure 2 : Imputation overview from Marchini and Howie (2010).
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The Statistical Framework

• Suppose we wish to estimate the association between a phenotype and m
genetic markers in n individuals.

• Let Gij represent the genotype of individual i at SNP j with Gij unobserved
for some SNPs.

• We consider diallelic SNPs so that Gij can take the value 0, 1 or 2
depending on whether the pair of constituent SNPs are {0, 0}, {0, 1},
{1, 0} or {1, 1}.

• If Gij is observed then for SNP j we simply model

p(yi |Gij)

• For example, if the phenotype yi is continuous, we might assume a normal
model:

E[Yi ] = β0 + β1Gij ,

and if yi is binary, a logistic model is an obvious candidate:

pi
1− pi

= exp(β0 + β1Gij)

where pi is the probability of disease for individual i .
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The Statistical Framework

• Let H = (H1, ...,HN) represent haplotype information at m SNPs in a
relevant reference-panel, with N distinct haplotypes.

• Let Gi be the observed genotype information for individual i .

• If Gij is unobserved then for SNP j we have the model

p(yi |H,Gi ) =
2∑

k=0

p(yi |Gij = k)× Pr(Gij = k|H,Gi )

• The big question is how to obtain the predictive distribution

Pr(Gij = k|H,Gi ).

• A common approach is to take as prior a Hidden Markov Model (HMM).

• We digress to discuss HMMs.
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Hidden Markov Models

• Example: Poisson Time Series A common problem is how to model count
data over time. A Poisson model is the obvious choice but how to
introduce:

1. overdispersion and
2. dependence over time.

• Consider the model:

Stage 1: Yt |λt ∼ Poisson(λt), t = 1, 2, ...

Stage 2: λt |Zt ∼iid

{
λ0 if Zt = 0
λ1 if Zt = 1

Stage 3: Zt |p ∼iid Bernoulli(p).

• An alternative model replaces Stage 3 with a (first-order) Markov chain
model, i.e, Pr(Zt |Z1, ...,Zt−1) = Pr(Zt |Zt−1):

Pr(Zt = 0|Zt−1 = 0) = p0

Pr(Zt = 1|Zt−1 = 1) = p1

• Zt is an unobserved (hidden) state.

• As an example we consider the number of major earthquakes (magnitude 7
and above) for the years 1990–2006.

• We illustrate the fit of this model with two or three underlying states.
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Example: Earthquake Data

0 20 40 60 80 100

5
10

15
20

25
30

35
40

Year index

Nu
mb

er 
of 

ea
rth

qu
ak

es

Figure 3 : The earthquake data along with the underlying states for the two and
three state HMMs, in blue and red, respectively.
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IMPUTE v1

• Marchini et al. (2007) consider a HMM for the vector of genotypes for
individual i :

Pr(Gi |H, θ, ρ) =
∑

zi=(z(1)
i ,z(2)

i )

Pr(Gi |Zi , θ)× Pr(Zi |H, ρ)

where Z(1)
i = {Z (1)

i1 , ...,Z
(1)
iJ ) and Z(2)

i = {Z (2)
i1 , ...,Z

(2)
iJ ).

• The (Z(1)
i ,Z(2)

i ) are the pair of haplotypes for SNP j from the reference
panel that are copied to form the genotype vector. These are the hidden
states.

• The term Pr(Zi |H, ρ) models how the pair of copied haplotypes for
individual i changes along the sequence. This probability changes
according to a Markov chain with the switching of states depending on the
fine-scale recombination rate ρ.

• The term Pr(Gi |Z, θ) allows the observed genotypes to differ from the pair
of copied haplotypes through mutation; the mutation parameter is θ.

• IMPUTE v2 (Howie et al., 2009) is a more flexible version that alternates
between phasing and haploid imputation.
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fastPHASE and BIMBAM

• We describe the model of Scheet and Stephens (2006).

• A Hidden Markov Model (HMM) is used to determine Pr(Gij = k|α,θ, r).

• The basic idea is that haplotypes tend to cluster into groups of similar
haplotypes; suppose there are K clusters.

• The unobserved hidden state is the haplotype cluster from which this SNP
arose from. Each cluster has an associated set of allele frequencies θkj .

• With K underlying states we have, for SNP j , αkj being the probability of
arising from haplotype k, with

K∑
k=1

αkj = 1.

• The model is

Pr(Gi |α,θ, r) =
∑
z

Pr(Gi |Zi ,θ)× Pr(Zi |α, r)

with Zij the haplotype of origin for individual i and SNP j .

• A Markov chain is constructed for Zij with the strength of dependence
being based on the recombination rate r at a given location.

• Given Zij = k, the genotype assigned depends on the allele frequencies of
the k-th haplotype at the j-th SNP.
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Use in Association Studies

• The simplest approach to using imputed SNPs is to substitute Ĝij (a
number between 0 and 2) into the phenotype association model.

• A set of probabilities Pr(Gij = k|G,H) for k = 0, 1, 2 are produced and
these may be used to average over the uncertainty in the phenotype model.

• Within BIMBAM the unknown genotype is sampled from its posterior
distribution, within an MCMC framework.

• Other approaches:
• MACH: similar methodology to IMPUTE (Li et al., 2010).
• Beagle: uses a graphical model for haplotypes (Browning and Browning,

2009).
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Practical Issues

• One may attempt to match the haplotype panel (e.g. from HapMAP 2)
with the study individuals.

• An alternative approach is to use all available haplotypes, and assigning
equal prior probabilities to each.

• Many studies, for example Huang et al. (2009), have examined SNP
imputation accuracy in different populations.
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Figure 4 : Imputation accuracy as a function of sample size, from Huang et al.
(2009).
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Figure 5 : Imputation accuracy for different populations with a reference-panel of 120
haplotypes. From Huang et al. (2009).
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Figure 6 : Example from Sanna et al. (2011). Imputation carried out using the MACH
software.
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Figure 7 : Example from Sanna et al. (2011).
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Model Comparison

• Markov chain Monte Carlo in particular has allowed the fitting of more and
more complex models, often hierarchical in nature with layers of random
effects.

• The search for a method to find the “best” of a set of candidate models
has also grown.

• Let p(y|θ) represent a generic likelihood for y = [y1, . . . , yn] and let

D(θ) = −2 log[p(y|θ)]

represent the deviance.

• For example, in an iid normal(µi (θ), σ2) normal the deviance is

1

σ2

n∑
i=1

[yi − µi (θ)]2.

• Frequentist model comparison for nested models is often carried out using
likelihood ratio statistics, which corresponds to the comparison of
deviances in generalized linear models (GLMs), see for example McCullagh
and Nelder (1989).
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Model Comparison: AIC

• One approach to model comparison is based on a model’s ability to make
good predictions.

• Such an objective, and predicting the actual observed data, leads to
Akaike’s an information criterion (AIC), derived in Akaike (1973).

• In AIC one tries to estimate the (Kullback-Leibler) distance between the
true distribution of the data, and the modeled distribution of the data.

• AIC is given by
AIC = −2 log[p(y |θ̂)] + 2k

where θ̂ is the MLE and k is the number of parameters in the model,
i.e. the size of θ.

• Small values of the AIC are favored, since they suggest low prediction error.

• The penalty term 2k penalizes the double use of the data.

• In general for prediction: overly complex models are penalized since
redundant parameters “use up” information in the data.



Imputation Model Comparison Conclusions References

Model Comparison: BIC

• Another approach is based on trying to identify the “true” model.

• Schwarz (1978) developed the Bayesian Information Criterion (BIC) which
is given by

BIC = −2 log[p(y |θ̂)] + k log n.

• BIC approximates −2 log p(y|θ) under a certain unit information prior
(Kass and Wasserman, 1995).

• BIC is consistent1 for finding the true model, if that model lies in the set
being compared.

• AIC is not consistent for finding the true model, but recall is intended for
prediction.

1meaning the BIC hones in on the true model as the sample size increases
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Model Comparison: DIC

• Spiegelhalter et al. (2002) introduced what has proved to be a very popular
model comparison statistic, the deviance information criterion (DIC).

• To define the DIC, define an “effective number of parameters as

pD = Eθ|y{−2 log[p(y|θ)]}+ 2 log[p(y|θ)]

= D + D(θ)

where θ = E [θ|y] is the posterior mean, D(θ) is the deviance evaluated at
the posterior mean and D = E [D|y].

• Hence, pD is the

posterior mean deviance− deviance of posterior means.

• The DIC is given by

DIC = D(θ) + 2pD

= D + pD ,

so that we have a measure of goodness of fit + complexity.

• DIC is straightforward to evaluate using MCMC or INLA.
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Model Comparison: DIC

DIC has been heavily criticized (Spiegelhalter et al., 2014):

• pD is not invariant to parameterization.

• DIC is not consistent for choosing the correct model.

• DIC has a weak theoretical justification and is not universally applicable.

• DIC has been shown to under penalize complex models (Plummer, 2008;
Ando, 2007).

• See Spiegelhalter et al. (2014) for an interesting discussion of the history
of DIC, including a summary of attempts to improve DIC.

• According to Google Scholar, as of June 20th, 2014, Spiegelhalter et al.
(2002) has 5251 citations...
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Model Comparison: CPO

• Another approach based on prediction uses the conditional predictive
ordinate (CPO).

• Let
y−i = [y1, . . . , yi−1, yi+1, . . . , yn]

represent the vector of data with the i-th observation removed.

• The idea is to predict the density ordinate of the left-out observation,
based on those that remain.

• Specifically, the CPO for observation i is defined as:

CPOi = p(yi |y−i )

=

∫
p(yi |θ)p(θ|y−i ) dθ

= Eθ|y−i
[p(yi |θ)]
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Model Comparison: CPO

• The CPOs can be used to look at local fit, or one can define an overall
score for each model:

log (CPO) =
n∑

i=1

log CPOi .

• Good models will have relatively high values of log (CPO).

• See Held et al. (2010) for a discussion of shortcuts for estimation
(i.e. avoidance of fitting the model n times) using MCMC and INLA.
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Model Comparison: Illustration, Childhood Mortality in Tanzania

• We illustrate the use of CPO and DIC in a study of estimating childhood
(under 5) mortality in regions of Tanzania.

• The data are collected via a series of 8 surveys in 21 regions covering the
period 1980–2009.

• Let qits be the childhood mortality in area i , at time point t from survey s.

• Based on the surveys we can obtain weighted (Horvitz-Thompson)
estimators q̂its with associated asymptotic variances Vits .

• We summarize the data via logit estimates

yits = log

(
q̂its

1− q̂its

)
.

• Let

φits = log

(
qits

1− qits

)
represent the logit of the childhood mortality.
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Model Comparison: Illustration, Childhood Mortality in Tanzania
We have a three-stage hierarchical model:

• Stage 1: Likelihood:

yits |φits ∼ normal(φits ,Vits).

and we compare the following six models:

Model 1: φits = µ+ αt + γt + θi + ηi + δit

Model 2: φits = µ+ αt + γt + θi + ηi + δit + νs

Model 3: φits = µ+ αt + γt + θi + ηi + δit + νs + νis

Model 4: φits = µ+ αt + γt + θi + ηi + δit + νs + νts

Model 5: φits = µ+ αt + γt + θi + ηi + δit + νs + νts + νis

Model 6: φits = µ+ αt + γt + θi + ηi + δit + νs + νts + νis + νits

where αt , θi , δit are independent random effects for time, area and the
interaction, γt and ηi are random effects that carry out local smoothing in
time and space and νs , νts , νis , νits are independent random effects to
reflect survey effects.

• Stage 2: Normal random effects Distributions.

• Stage 3: Hyperpriors on µ and the random effects variances.
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Model Comparison: Illustration, Childhood Mortality in Tanzania

Table 1 : Model comparison statistics for 6 models for the Tanzania data; “best” in
red.

Model No. Parameters pD D̄ DIC log(CPO)
2 181 75 409 484 -295
2 189 81 382 463 -288
3 313 120 219 339 -193
4 223 91 364 454 -282
5 347 128 202 330 -182
6 920 149 185 334 -184

• Notice how much smaller the effective number of parameters is, when
compared with the total number of parameteres; this is because of the
shrinkage/penalization of the random effects distributions.

• Both CPO and DIC suggest that model 5 is the best:

Model 5: φits = µ+ αt + γt + θi + ηi + δit + νs + νts + νis

• So survey effects vary across time and across areas (different teams sent
out).
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Figure 8 : Smoothed estimates of national under 5 mortality in Tanzania (solid line)
per 1000 births, different surveys denoted with dashed lines and vertical lines represent
95% interval estimates.
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Conclusions

• Hierarchical models allow complex dependencies within data to be
modeled.

• Prior specification for variance components is not straightforward, and
sensitivity analysis is a good idea.

• No universally agreed upon approach to carrying out model comparison.
]item The Widely Applicable Information Criteria (WAIC) is growing in
popularity (Watanabe, 2013; Gelman et al., 2014).
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Off-the-shelf MCMC

Recall the big picture(s) of Markov Chain Monte Carlo;

θ1 θ1

θ2 θ2

1

3

4

5

1

2

3

4
5

2

These show the Gibbs Sampler.
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Off-the-shelf MCMC

Recall the big picture(s) of Markov Chain Monte Carlo;
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Large sample (points) to estimate posterior (contours)
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However we get there, we want a large sample from the posterior

distribution.
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Off-the-shelf MCMC

Markov Chain Monte Carlo (MCMC) is the general term for
sampling methods that use Markov Chain processes∗ to ‘explore’
the parameter space; the (many) random process values form
our approximation of the posterior.

But in many settings this ‘walking around’ is mundane; once we
specify the model and priors, the process of getting samples from
the posterior can be done with no original thought – i.e. we can
get a computer to do it.

Some example of this labor-saving approach;

• WinBUGS (next)
• ... or JAGS, OpenBUGS, NIMBLE and Stan
• INLA – a competitor to MCMC

The R Task Views on Genetics and Bayesian methods may also
have specialized software; see also Bioconductor

3

http://www.mrc-bsu.cam.ac.uk/software/bugs/
https://martynplummer.wordpress.com/2016/04/05/new-windows-binary-for-r-3-3-0/
http://openbugs.net/w/FrontPage
https://bids.berkeley.edu/research/nimble-numerical-inference-hierarchical-models-using-bayesian-and-likelihood-estimation
http://mc-stan.org/
http://www.r-inla.org/download
https://cran.r-project.org/web/views/Genetics.html
https://cran.r-project.org/web/views/Bayesian.html
http://bioconductor.org/


WinBUGS

µ τ

Y6

Y5

Y1

Y2

Y3 Y4

θ

Started in 1989, the Bayesian analysis Using Gibbs

Sampling (BUGS) project has developed software

where users specify only model and prior – everything

else is internal. WinBUGS is the most comprehensive

version.

• The model/prior syntax is very similar to R

• ... with some annoying wrinkles – variance/precision, also

column major ordering in matrices

• Can be ‘called’ from R – see e.g. R2WinBUGS, but you still need

to code the model

Before we try it on genetic data, a tiny

example (n = 1, Y = 4);

Y |θ ∼ Pois (E exp(θ))

θ ∼ N(0,1.7972)

E = 0.25

4



WinBUGS

One (sane) way to code this in the BUGS language;

model{
Y∼dpois(lambda) ...Poisson distribution, like R

lambda <- E*exp(theta) ...syntax follows R

E <- 0.25 ...constants could go in data

theta∼dnorm(m,tau) ...prior for θ
m <- 0

tau <- 1/v tau = precision NOT variance!
v <- 1.797*1.797

} ...finish the model

#data

list(Y=4) Easiest way to input data
#inits

list(theta=0) Same list format; or use gen.inits

5



WinBUGS

Notes on all this; (not a substitute for reading the manual!)

• This should look somewhat familiar, from the models we

have been writing out. In particular ‘∼’ is used to denote

distributions of data and parameters

• All ‘nodes’ appear once on the LHS; hard work is done on

RHS

• No formulae allowed when specifying distributions

• Data nodes must have distributions. Non-data nodes must

have priors – it’s easy to forget these

• Write vector math ‘by hand’; beta0 + beta1*x1 + ...

• This language can’t do everything; BUGS does not allow e.g.

Y <- U + V

U∼dnorm(meanu,tauu); V∼dt(meanv,tauv,k)
#data

list(Y=...)

6



WinBUGS

From 10,000 iterations, how do we do? (Note ‘MC error’
estimates Monte Carlo error in the posterior mean)

Histogram of WinBUGS output

theta

de
ns

ity

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

prior
likelihood
posterior

node mean sd MC error 2.5% median 97.5%
theta 2.422 0.5608 0.005246 1.229 2.466 3.388
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WinBUGS

Under the hood, here’s how WinBUGS ‘thinks’;

Y

λ

E θ

m τ • It’s a DAG; arrows represent

stochastic relationships (not causal-

ity)

• Some texts use square nodes for

observed variables (Y , here)

• To do a Gibbs update, we need

to know/work out the distribution

of a node conditional on only its

parents, children, and its children’s

other parents∗.

* This set is a node’s ‘Markov blanket’. The idea saves a lot of effort, and

is particularly useful when fitting random effects models.
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WinBUGS: HWE example

A multinomial example, with a default prior;

Y ∼ Multinomial(n,θθθ)

where θθθ = (p2,2p(1− p), (1− p)2)

p ∼ Beta(0.5,0.5).

A typical way to code it in “the BUGS language”;

model{

y[1:3] ~ dmulti(theta[], n)

theta[1] <- p*p

theta[2] <- 2*p*(1-p)

theta[3] <- (1-p)*(1-p)

p ~ dbeta(0.5, 0.5)

}

9



WinBUGS: HWE example

We have n = 186,

and Y = (53,95,38).

We will run 3

chains, starting at

p = 0.5,0.1 and 0.9.

In WinBUGS, input

these by highlighting

list objects:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

θ 2 ●
Observed proportions

●

p=0.5

● p=0.1 ●p=0.9

# Data # Initial values
list(y=c(53,95,38),n=186) list(p=0.5)

list(p=0.1)
list(p=0.9)
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WinBUGS: HWE example

WinBUGS unlovely but functional in-house output;

The posterior has 95% support for p ∈ (0.49,0.59), the posterior

mean = posterior median = 0.54. Use coda to get the chain(s).

11



WinBUGS: less pointy-clicky

Apart from coming up with the model, everything can be

automated – using R’s R2WinBUGS package;

library("R2WinBUGS")
hweout <- bugs(data=list(y=c(53,95,38),n=186),

inits=list(p=0.5, p=0.1, p=0.9),
parameters.to.save=c("p"),

model.file="hweprog.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=FALSE)

• Model code in a separate file (hweprog.txt)

• Specify the data and initial values as R structures

• Tell R where to find WinBUGS

• The output is stored in hweout, an R object – no need to go

via coda

• When debugging, pointy-clicky WinBUGS is still useful

• See next slide for less-clunky graphics

12



WinBUGS: less pointy-clicky

> print(hweout, digits=3)
Inference for Bugs model at "hweprog.txt", fit using WinBUGS,
3 chains, each with 10000 iterations (first 500 discarded)
n.sims = 28500 iterations saved

mean sd 2.5% 50% 97.5% Rhat n.eff
0.540 0.026 0.490 0.541 0.590 1.001 28000.000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
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WinBUGS: how it works (roughly)

• As well as the Markov blanket idea, WinBUGS uses what it

knows about conjugacy to substitute closed form integrals

in the calculations, where it can. (e.g. using inverse-gamma

priors on Normal variances)

• Otherwise, it chooses from a hierarchy of sampling methods

– though these are not cutting-edge

• Because of its generality, and the complexity of turning a

model into a sampling scheme, don’t expect too much help

from the error messages

• Even when the MCMC is working correctly, it is possible

you may be fitting a ridiculous, unhelpful model. WinBUGS’

authors assume you take responsibility for that

Also, while Gibbs-style sampling works well in many situations,

for some problems it’s not a good choice. If unsure, check the

literature to see what’s been tried already.
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WinBUGS: other engines

WinBUGS is no longer updated — but it’s pointy-clicky interface
remains a good place to get started. The BUGS language, de-
scribing models, is now used in JAGS, NIMBLE and OpenBUGS.
Here’s rjags using the exact same model file we just saw;

> library("rjags")
> jags1 <- jags.model("hweprog.txt", data=list(y=c(53,95,38),n=186) )
> update(jags1, 10000)
> summary( coda.samples(jags1, "p", n.iter=10000) )
Iterations = 11001:21000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

0.5398583 0.0258055 0.0002581 0.0003308
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.4890 0.5225 0.5398 0.5576 0.5895

JAGS uses C, so is easier to extend than WinBUGS.
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Stan

Stan is similar to

BUGS, WinBUGS,

JAGS etc – but

new & improved;

• Coded in C++, for faster updating, it runs the No U-Turn

Sampler – cleverer than WinBUGS’ routines

• The rstan package lets you run chains from R, just like we

did with R2WinBUGS

• Some modeling limitations – no discrete parameters – but

becoming popular; works well with some models where

WinBUGS would struggle

• Basically the same modeling language as WinBUGS – but

Stan allows R-style vectorization

• Requires declarations (like C++) – unlike WinBUGS, or R –

so models require a bit more typing...
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Stan: example

A Stan model for the HWE example

data {
int y[3];

}
parameters {

real<lower=0,upper=1> p;
}
transformed parameters {

simplex[3] theta;
theta[1] = p*p;
theta[2] = 2*p*(1-p);
theta[3] = (1-p)*(1-p);

}
model {

p~beta(0.5, 0.5);
y~multinomial(theta);

}

• More typing than BUGS!

• But experienced programmers will be used to this overhead
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Stan: example

With the model stored in HWEexample.stan (a text file) the rest
follows as before;

> library("rstan")
> stan1 <- stan(file = "HWEexample.stan", data = list(y=c(53,95,38)),
+ iter = 10000, chains = 1)
> print(stan1)
Inference for Stan model: HWEexample.
1 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=5000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
p 0.54 0.00 0.03 0.48 0.52 0.54 0.56 0.60 5000
theta[1] 0.29 0.00 0.03 0.23 0.27 0.29 0.31 0.36 5000
theta[2] 0.49 0.00 0.01 0.48 0.49 0.50 0.50 0.50 4541
theta[3] 0.21 0.00 0.03 0.16 0.19 0.21 0.23 0.27 5000
lp__ -192.17 0.02 0.87 -194.71 -192.44 -191.81 -191.57 -191.49 2762

Samples were drawn using NUTS(diag_e) at Tue Jul 26 14:13:31 2016.

• Iterations in the stan1 object can be used for other sum-
maries, graphs, etc
• lp is the log likelihood, used in (some) measures of model

fit
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INLA

We’ve seen various examples of Bayesian analysis using Inte-

grated Nested Laplace Approximation (INLA). For a (wide) class

of models known as Gaussian Markov Random Fields, it gives a

very accurate approximation of the posterior by ‘adding up’ a

series of Normals.

• This approximation is not stochastic – not a Monte Carlo

method

• Even with high-dimensional parameters, where MCMC works

less well/badly, INLA can be practical

• INLA is so fast that e.g. ‘leave-one-out’ & bootstrap

methods are practical – and can scale to GWAS-size analyses

• Fits most regression models – but not everything, unlike

MCMC

• Non-standard posterior summaries require more work than

manipulating MCMC’s posterior sample
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INLA

The inla package in R has syntax modeled on R’s glm() function.
And with some data reshaping, our HWE example is a GLM;

> y <- c(53,95,38) # 2,1,0 copies of allele with frequency "p"
> n <- 186
> longdata <- data.frame(y=rep(2:0, y), ni=rep(2, n) )
> # non-Bayesian estimate of log(p)/(1-log(p)) i.e. log odds
> glm1 <- glm( cbind(y,ni-y) ~ 1, data=longdata, family="binomial" )
> expit <- function(x){exp(x)/(1+exp(x) )}
> expit(coef(glm1))
(Intercept)

0.5403226
> expit(confint(glm1))

2.5 % 97.5 %
0.4895317 0.5905604
> inla1 <- inla( y~1, family="binomial", data=longdata, Ntrials=rep(2,n) )
> summary(inla1)$fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.1616 0.104 -0.0422 0.1615 0.3661 0.1612 0
> expit(summary(inla1)$fixed[,3:5]) # posterior of "p"
0.025quant 0.5quant 0.975quant
0.4894516 0.5402875 0.5905163

For non-default priors, see the examples on the course site.
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