
10. Interfacing R

Thomas Lumley

Ken Rice

Universities of Auckland and Washington

São Paulo, January 2014



Interfacing R

With Bioconductor, R can do a huge proportion of the analyses

you’ll want – but not everything

• Intensive (or anachronistic) C++, FORTRAN work, e.g. for

pedigrees

• ‘Speciality’ analyses; some need different computing archi-

tecture

• Fancy interactive graphics

R can be used to ‘manage’ other software. Today we’ll illustrate

some favorite examples

10.1



Starting other software

NB these commands are for Windows only; see help files for e.g.

Unix versions

• shell() does the equivalent of a DOS-style command

• shell("notepad") starts the Notepad editor

• If the command takes arguments, put them in the same

string;

shell("notepad myfile.txt")

The system() and shell.exec() commands do much the same

thing.

10.2



Starting other software

Some more options for shell();

• wait; R ‘hangs’ until completion

• translate; makes forward and backslashes work properly

• intern; return the output as an R object

For other options see the system() help page, for example
minimized=TRUE.

Paths for files can be a little messy; shell() starts in your working
directory (find it using getwd()). For files outside of this, give
the full pathway.

paste() is useful, if you need to do a lot of this sort of thing.

10.3



Examples

Code for a really mundane job;

for(i in 1:100){

infile <- paste("gene",i,"data.txt", sep="")

outfile <- paste("gene",i,"phase.out", sep="")

shell(paste("PHASE",infile,outfile))

}

... this will churn away for hours, although with no error-control.

Why did we use wait=TRUE here? (the default)

10.4



Examples

• WinBUGS implements Bayesian analyse; it’s not super-fast

but is very flexible

• It needs special (& clever) architecture to achieve this

• WinBUGS’ input, output, graphics are all rather clunky

• R is better; so R2WinBUGS calls WinBUGS for the difficult bits,

and does all the ‘translation’ itself

• This is done with (repeated) use of system()

10.5



Outline

Many programs already exist to do useful analyses. It is more

convenient to call them from R than to rewrite them in R.

Sometimes this involves calling the C code directly, sometimes

just involves using R to write input files for another program

Examples:

• Graphviz: drawing networks

• PMF: input files for ancient Fortran software

• Google Earth: displaying outliers in context.

10.6



Drawing networks

GraphViz (http://www.graphviz.org) is a free program for draw-

ing networks, written by AT&T researchers.

Its input format looks like

"15" [shape= box,regular=1 ,height= 0.5 ,width= 0.75 ,style=filled,color= grey ] ;
"16" [shape= circle ,height= 0.5 ,width= 0.75 ,style=filled,color= grey ] ;
"2x3" [shape=diamond,style=filled,label="",height=.1,width=.1] ;
"2" -> "2x3" [dir=none,weight=1] ;
"3" -> "2x3" [dir=none,weight=1] ;
"2x3" -> "1" [dir=none,weight=2] ;
"2x3" -> "4" [dir=none,weight=2] ;
"2x3" -> "5" [dir=none,weight=2] ;
"2x3" -> "6" [dir=none,weight=2] ;

The sem package uses GraphViz to display path diagrams for

structural equation models and the gap package uses it to draw

pedigrees.

10.7

http://www.graphviz.org


Drawing networks

In gap the pedtodot() function writes a GraphViz input file from

a pedigree in GAS or LINKAGE format.

pid id fid mid sex aff GABRB1 D4S1645
1 10081 1 2 3 2 2 7/7 7/10
2 10081 2 0 0 1 1 -/- -/-
3 10081 3 0 0 2 2 7/9 3/10
4 10081 4 2 3 2 2 7/9 3/7
5 10081 5 2 3 2 1 7/7 7/10
6 10081 6 2 3 1 1 7/7 7/10
7 10081 7 2 3 2 1 7/7 7/10
8 10081 8 0 0 1 1 -/- -/-
9 10081 9 8 4 1 1 7/9 3/10
10 10081 10 0 0 2 1 -/- -/-
11 10081 11 2 10 2 1 7/7 7/7
12 10081 12 2 10 2 2 6/7 7/7
13 10081 13 0 0 1 1 -/- -/-
14 10081 14 13 11 1 1 7/8 7/8
15 10081 15 0 0 1 1 -/- -/-
16 10081 16 15 12 2 1 6/6 7/7

10.8



Drawing networks

First the code prints nodes for each individual, with sex and

affectedness information

for (s in 1:n) cat(paste("\"", id.j[s], "\" [shape=",
sep = ""), shape.j[s], ",height=", height, ",width=",
width, ",style=filled,color=", shade.j[s], "] ;\n")

giving output like

"16" [shape= circle ,height= 0.5 ,width= 0.75 ,style=filled,color= grey ] ;

It then works out all the matings and creates small nodes for
each mating and lines connecting the parents to these nodes

mating <- paste("\"", s1, "x", s2, "\"", sep = "")
cat(mating, "[shape=diamond,style=filled,label=\"\",height=.1,width=.1] ;\n")
cat(paste("\"", s1, "\"", sep = ""), " -> ", mating,

paste(" [dir=", dir, ",weight=1]", sep = ""),
" ;\n")

cat(paste("\"", s2, "\"", sep = ""), " -> ", mating,
paste(" [dir=", dir, ",weight=1]", sep = ""),
" ;\n")

10.9



Drawing networks

giving output like

"2x3" [shape=diamond,style=filled,label="",height=.1,width=.1] ;
"2" -> "2x3" [dir=none,weight=1] ;
"3" -> "2x3" [dir=none,weight=1] ;

and then connects children to parents.

10.10



Drawing networks

pedigree 10081 

1

23

4 5 6 78

9

10

11 1213

14

15

16

[Bioconductor also has GraphViz more integrated with R in the

RGraphViz package]

10.11



Chromosome simulation

MaCS, the Markov Coalescent Simulation (Chen et al, 2008)

simulates realistic genotypes using an approximation to the

coalescent.

It’s a command-line program written in C++, with output:

/Users/tlumley/macs/macs 2000 15000 -t .001 -r .001 .001
1390319964

//
segsites: 134
positions: 0.000421536259 0.0100671644 0.0111485623 0.0230004096 0.0332452159...
100000000000000000000000000000100100010001000000000000000000001010000...
000000000000000000000000000000000000000000000000000000000000000000000...
000000000000000000000000000000000000000000000000000000000000000000000...

We want the same sort of simulation functions as in earlier

sessions, so we need an R function that calls MaCS and returns a

data matrix.

10.12



Chromosome simulation

Tasks

• Call MaCS

• Read in the lines of haploid genotypes as character strings

• Split into numbers

• Recode so 1 is the minor allele

• Combine pairs of haploids into a diploid

10.13



Chromosome simulation

makemacsdata<-function(N,length=15000,filter=0.05){

f<-tempfile()

system(paste("~/macs/macs",2*N,length,

" -t .001 -r .001 2>/dev/null | ~/macs/msformatter >", f))

input<-readLines(f)[-(1:6)]

unlink(f)

haplo<-do.call(rbind,lapply(strsplit(input,""),as.integer))

diplo<-haplo[1:N,]+haplo[(N+1):(2*N),]

af<-colMeans(diplo)/2

diplo[,af>0.5]<- 2-diplo[,af>0.5,drop=FALSE]

maf<-colMeans(diplo)/2

diplo[,af<=filter,drop=FALSE]

}

10.14



Chromosome simulation

From the user’s viewpoint it looks as though everything was done

in R.

> d<-makemacsdata(1000)

> str(d)

num [1:1000, 1:80] 0 0 0 0 0 0 0 0 0 0 ...

> summary(colMeans(d)/2) #maf

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00050 0.00100 0.00450 0.01142 0.01512 0.05000

10.15



Chromosome simulation

Now simulate a new version of the SKaT rare-variant test

one.sim<-function(thresholds=c(Inf,1/2,1/3,1/4),

sqrtweights=wuweights,

N=4000, n=200, length=15000, filter=0.02)

{

G <- makemacsdata(N,length,filter=filter)

y <- sample(rep(0:1,c(N-n,n)))

sapply(thresholds,

function(c) winskat(G,y,threshold=c,sqrtweights))

}

10.16



SVG+tooltips

SVG (Scalable Vector Graphics) is a non-bitmap graphics format

for the web.

The RSvgDevice and RSVGTipsDevice packages allow R output

to SVG format.

We can use this to create graphs with links and tooltips. For

example, a funnelplot showing associations between a large

number of SNPs and VTE.

Point at a dot to see the SNP it represents, and click to go to

information about the gene.

10.17



SVG+tooltips

for(i in 1:length(or)) {
setSVGShapeToolTip(title=gene[i],

desc1=snp[i],
desc2=if(abs(lor[i]/se[i])>qnorm(0.5/n,lower.tail=FALSE))

qvals[i] else NULL
)

setSVGShapeURL(paste("http://pga.gs.washington.edu/data",
tolower(gene[i]),
sep="/")

)
points(prec[i],lor[i], cex=1, pch=19, col=’grey’)

}

10.18



Google Earth

Google Earth is controlled by KML files specifying locations.

KML is another plain text format.

We can write a KML file

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
<Placemark>
<name> 1 </name>

<Point> <coordinates>-118.0256,34.11619,400</coordinates>
</Point>

</Placemark>
</kml>

and then send it to Google Earth with the shell.exec(filename)

function, which opens a file using whatever is the appropriate

program.

10.19



Google Earth

The identify() function lets the user select a point on a
scatterplot.

●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●●

●

● ●

●

● ●

●

● ●

●
●

●
●

●

●

●
●●

● ●
●

●

● ●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ● ●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

0 100 200 300 400 500

20
40

60
80

Dist_nearestmajor

ai
r_

no
x_

co
rr

In this example the points are locations where air pollution was
measured, and we can call Google Earth to look at the location.

10.20


	Interfacing R
	Starting other software
	Examples
	Outline
	Drawing networks
	PMF: factor analysis
	SVG+tooltips
	Google Earth

