
R for large data and bioinformatics
Thomas Lumley

Ken Rice

Universities of Washington and Auckland

São Paulo, January 2014

Introduction: Course Aims

• Under the hood of R;

– R essentials, and programming skills

– Examples implement common genetic analyses, efficiently

• Using R for more sophisticated analyses;

– Using tools, packages produced by others

– Bioconductor-based bioinformatics

While no R knowledge is assumed, we will move quickly – and
knowing either some programming or some genetics will help a
lot – also trying our coding ideas on your data, later.

If you are new(er) to R and need help with e.g. reading in data,
manipulating data, understanding help files, please ask Thomas,
Ken, or someone else in class, during hands-on periods.

0.1

Introduction: About Prof Lumley

• Professor, Univ of Auckland

• R Core developer

• Genetic/Genomic research in

Cardiovascular Epidemiology

• Sings bass

0.2

Introduction: About Prof Rice

• Associate Prof, UW Biostat

• Not an authoR, but a useR (and

a teacheR)

• Genetic/Genomic research in

Cardiovascular Epidemiology

• Sang bass (last week)

... and you?

(who are you, what area of genetics, what are you looking for

from the course)

0.3

Introduction: Course structure

10 sessions over 2.5 days

• Day 1; Review of R, graphics, data-wrangling

• Day 2; Programming (loops), big data, bioconductor

• Day 2.5; More bioconductor, interfacing with other code

Web page: http://faculty.washington.edu/kenrice/sisg/

0.4

http://faculty.washington.edu/kenrice/sisg/

Introduction: Session structure

• 45 mins teaching (questions welcome – please interrupt!)

• 30 mins hands-on

• 15 mins summary, discussion

Keys are posted after each session – though there is more than

one correct answer

0.5

1. Review of R

Ken Rice

Thomas Lumley

Universities of Washington and Auckland

São Paulo, January 2014

1.0

What is R?

R is a ‘programming environment for statistics and graphics’

The base R has fewer prepackaged statistics procedure than

SPSS or SAS, but it is much easier to extend with new

procedures.

There are about 3500 published extension packages for R, many

aimed at genetics and genomics research.

1.1

Using R

R is a free implemention of S, for which John Chambers won the

ACM Software Systems award.

For the S system, which has forever altered how people

analyze, visualize, and manipulate data.

The downside is that using R effectively may require changing

how you analyze, visualize, and manipulate data.

R is a command-line system, not a point-and-click system.

1.2

A calculator

> 2+2

[1] 4

> 1536/317000

[1] 0.004845426

> exp(pi)-pi

[1] 19.9991

> x <- 3

> y <- 2

> x+y

[1] 5

> ls()

[1] "x" "y"

> round(pi, 6)

[1] 3.141593

> round(pi,

+ 6)

[1] 3.141593

1.3

Scripts

For longer analyses (and for this course), it’s better to type code

into a script and then run it. In base R;

• Windows: File | New script, CTRL-R to run lines or regions

• Mac: File | New Document, command-return to run

• Some other text editors offer this: Emacs, Tinn, WinEDT,

JGR, Eclipse. RStudio has a script editor and data viewer

Please note we strongly recommend doing the exercises in pairs

1.4

Scripts

Default interface (and how to use it);

1.5

Reading data

Ability to read in data is assumed. But to illustrate commands,

and show some less-standard approaches, we’ll review reading in;

• Text files

• Other statistics packages datasets

• Web pages

Much more information is in the Data Import/Export manual.

1.6

Reading text data

The easiest format has variable names in the first row

case id gender deg yrdeg field startyr year rank admin

1 1 F Other 92 Other 95 95 Assist 0

2 2 M Other 91 Other 94 94 Assist 0

3 2 M Other 91 Other 94 95 Assist 0

4 4 M PhD 96 Other 95 95 Assist 0

and fields separated by spaces. In R, use

salary <- read.table("salary.txt", header=TRUE)

to read the data from the file salary.txt in the current working

directory into the data frame salary.

1.7

Syntax notes

• Spaces in commands don’t matter (except for readability),
but Capitalisation Does Matter.

• TRUE (and FALSE) are logical constants

• Unlike many systems, R does not distinguish between com-
mands that do something and commands that compute a
value. Everything is a function: i.e. it returns a value.

• Arguments to functions can be named (header=TRUE) or
unnamed ("salary.txt")

• A whole data set (called a data frame is stored in a variable
(salary), so more than one dataset can be available at the
same time.

1.8

Did it work?

The head() function shows the first few lines of the data frame

> head(salary)

case id gender deg yrdeg field startyr year rank admin salary

1 1 1 F Other 92 Other 95 95 Assist 0 6684

2 2 2 M Other 91 Other 94 94 Assist 0 4743

3 3 2 M Other 91 Other 94 95 Assist 0 4881

4 4 4 M PhD 96 Other 95 95 Assist 0 4231

5 5 6 M PhD 66 Other 91 91 Full 1 11182

6 6 6 M PhD 66 Other 91 92 Full 1 11507

It should look like this!

The View() command similarly shows your data frame, in a

manageable way.

1.9

Where’s my file?

• Find out your current directory with getwd()

• Change directory with the menus

• or with setwd("I:/like/this/directory/better")

• file.choose() pops up a dialog for choosing a file and returns

the name, so

salary <- read.table(file.choose(), header=TRUE)

1.10

Reading text data

Sometimes columns are separated by commas (or tabs)

Ozone,Solar.R,Wind,Temp,Month,Day

41,190,7.4,67,5,1

36,118,8,72,5,2

12,149,12.6,74,5,3

18,313,11.5,62,5,4

NA,NA,14.3,56,5,5

Use

ozone <- read.table("ozone.csv", header=TRUE, sep=",")

or

ozone <- read.csv("ozone.csv")

1.11

Syntax notes

• Forgetting header=TRUE in read.table() is bad (try it!)

• Functions can have optional arguments (sep wasn’t used

the first time). Use help("read.table") or ?read.table for

a complete description of the function and all its arguments.

• There’s more than one way to do it.

• NA is the code for missing data. Think of it as “Don’t

Know”. R handles it sensibly in computations: eg 1+NA,

NA & FALSE, NA & TRUE. You cannot test temp==NA (Is

temperature equal to some number I don’t know?), so there

is a function is.na().

1.12

Reading text data

Sometime the variable names aren’t included

1 0.2 115 90 1 3 68 42 yes

2 0.7 193 90 3 1 61 48 yes

3 0.2 58 90 1 3 63 40 yes

4 0.2 5 80 2 3 65 75 yes

5 0.2 8.5 90 1 2 64 30 yes

and you have to supply them

psa <- read.table("psa.txt", col.names=c("ptid","nadirpsa",

"pretxpsa", "ps","bss","grade","age",

"obstime","inrem"))

or

psa <- read.table("psa.txt")

names(psa) <- c("ptid","nadirpsa","pretxpsa", "ps",

"bss","grade","age","obstime","inrem")

1.13

Syntax notes

• Assigning a single vector (or anything else) to a variable uses

the same syntax as assigning a whole data frame.

• c() is a function that makes a single vector from its

arguments.

• names() is a function that accesses the variable names of a

data frame

• Some functions, such as names(), can be used on the LHS of

an assignment.

1.14

Other statistical packages

library("foreign")

stata <- read.dta("salary.dta")

spss <- read.spss("salary.sav", to.data.frame=TRUE)

sasxport <- read.xport("salary.xpt")

epiinfo <- read.epiinfo("salary.rec")

Notes:

• Many functions in R live in optional packages. The library()

function lists packages, shows help, or loads packages from

the package library.

• The foreign package is in the standard distribution. It handles

import and export of data. Thousands of extra packages are

available at http://cran.r-project.org.

1.15

http://cran.r-project.org

The web

Files for read.table() can live on the web

fl2000<-read.table("http://faculty.washington.edu/tlumley/

data/FLvote.dat", header=TRUE)

It’s also possible to read from more complex web services (such

as the genome databases)

1.16

Operating on data

We assume you know how to use the $ sign, to indicate columns

of interest in a dataset, e.g. antibiotics$duration means the

variable duration in the data frame antibiotics.

This is a comment

Convert temperature to real degrees

antibiotics$tempC <- (antibiotics$temp-32)*5/9

display mean, quartiles of all variables

summary(antibiotics)

1.17

Subsets

Everything in R is a vector (but some have only one element).

The re are several ways to use [] to extract subsets

First element

antibiotics$temp[1]

All but first element

antibiotics$temp[-1]

Elements 5 through 10

antibiotics$temp[5:10]

Elements 5 and 7

antibiotics$temp[c(5,7)]

People who received antibiotics (note ==)

antibiotics$temp[antibiotics$antib==1]

or

with(antibiotics, temp[antib==1])

1.18

Notes

• Positive indices select elements, negative indices drop ele-

ments

• 5:10 is the sequence from 5 to 10

• You need == to test equality, not just =

• with() temporarily sets up a data frame as the default place

to look up variables.

1.19

More subsets

For data frames you need two indices – naming rows and columns

can also be useful;

First row

antibiotics[1,]

Second column

antibiotics[,2]

Some rows and columns

antibiotics[3:7, 2:4]

Columns by name

antibiotics[, c("id","temp","wbc")]

People who received antibiotics

antibiotics[antibiotics$antib==1,]

Put this subset into a new data frame

yes <- antibiotics[antibiotics$antib==1,]

1.20

Computations

mean(antibiotics$temp)

median(antibiotics$temp)

var(antibiotics$temp)

sd(antibiotics$temp)

mean(yes$temp)

mean(antibiotics$temp[antibiotics$antib==1])

with(antibiotics, mean(temp[sex==2]))

toohot <- with(antibiotics, temp>99)

mean(toohot)

1.21

Factors

Factors represent categorical variables. You can’t do mathemat-

ical operations on them (except for ==)

> table(salary$rank,salary$field)

Arts Other Prof

Assist 668 2626 754

Assoc 1229 4229 1071

Full 942 6285 1984

> antibiotics$antib<-factor(antibiotics$antib,

labels=c("Yes","No"))

> antibiotics$agegp<-cut(antibiotics$age, c(0,18,65,100))

> table(antibiotics$agegp)

(0,18] (18,65] (65,100]

2 19 4

1.22

Help!

• ?fn or help(fn) for help on fn

• help.search("topic") for help pages related to ”topic”

• apropos("tab") for functions whose names contain ”tab”

• RSiteSearch("FDR") to search the R Project website (requires

internet access)

1.23

	Introduction: Course Aims
	Introduction: Resources
	Introduction: About Prof Lumley
	Introduction: About Prof Rice
	Introduction: Course structure
	Introduction: Session structure
	
	What is R?
	Using R
	A calculator
	Scripts
	Reading data
	Reading text data
	Syntax notes
	Did it work?
	Where's my file?
	Reading text data
	Syntax notes
	Reading text data
	Syntax notes
	Other statistical packages
	The web
	Operating on data
	Subsets
	Notes
	More subsets
	Computations
	Factors
	Help!

