
5. Simulation and Permutation

Ken Rice

Thomas Lumley

Universities of Washington and Auckland

Seattle, July 2013

Overview

• Simulation

• Permutation tests

• A mean

• Smallest p-value across multiple models

• Cautionary notes, which we won’t get to.

5.1

Testing

In testing a null hypothesis we need a test statistic that will have

different values under the null hypothesis and the alternatives we

care about (eg a relative risk of diabetes)

The p-value is the probability that the test statistic would be at

least as extreme as the data we observed, if the null hypothesis

is true.

— need to compute the sampling distribution of the test statistic

when the null hypothesis is true.

The power of a test is the probability that the p-value meets

our threshold for interestingness (p = 0.05 or p = 10−exciting)

— need the sampling distribution when an alternative hypothesis

is true.

5.2

Simulation

In some examples, can work out the sampling distribution

mathematically.

More generally, let a computer work out the sampling distribution

by creating thousands of possible datasets and doing the analysis.

• Testing: create a data set where the null hypothesis is true,

work out the test statistic, repeat many times

• Power: create a data set where an alternative hypothesis

is true, work out the p-value, repeat many times.

5.3

Tools

• Generating random numbers: rnorm(), rbinom(),rpois(), and

others

• Taking random samples with equal or unequal probabiility:

sample()

• t.test(), chisq.test(), lm(), glm() for doing computations

• replicate() for repeating computations multiple times

5.4

Permutations

A permutation test computes the sampling distribution for any
test statistic, under the ‘strong null hypothesis’ that a set of
genetic variants has absolutely no effect on the outcome.

To estimate the sampling distribution of the test statistic we
need many samples generated under the strong null hypothesis.

If the null hypothesis is true, changing the exposure would have
no effect on the outcome. By randomly shuffling the exposures
we can make up as many ‘null’ data sets as we like.

If the null hypothesis is true, the shuffled data sets should look
like the real data. Otherwise, they should look different from
the real data.

Comparing the shuffled test statistics to the real test statistic
gives a p-value

5.5

Example: null is true

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

5.6

Example: null is false

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

5.7

Testing: Mean difference (v1)

Our first example is a difference in mean outcome in a dominant

model for a single SNP

make up some ‘true’ data

carrier<-rep(c(0,1), c(100,200))

alt.y<-rnorm(300, mean=carrier/2)

There is a real effect; carriers have higher y-values, on average.

(In this case we know from theory the distribution of a difference

in means and could just do a t-test)

5.8

Means: permutation test

To perform the permutation test...

alt.diff<-mean(alt.y[carrier==1])-mean(alt.y[carrier==0])

one.diff <- function(x,y) {

xstar<-sample(x)

mean(y[xstar==1])-mean(y[xstar==0])

}

many.diff <- replicate(10000, one.diff(x=carrier, y=alt.y))

hist(many.diff)

abline(v=alt.diff, lwd=2, col="purple")

mean(abs(many.diff) > abs(alt.diff))

5.9

Example: null is false

Histogram of many.diff

many.diff

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4

0
50

0
10

00
15

00

9 out of 10,000 shuffled difference exceeds observed difference:
p ≈ 0.0009.

5.10

Testing: Mean difference (v2)

Now we generate some y where the null holds, i.e. mean is

unrelated to being a carrier;

carrier<-rep(c(0,1), c(100,200))

null.y<-rnorm(300, mean=0)

(what should happen?)

5.11

Testing: Mean difference (v2)

The rest of the commands work exactly as before...

null.diff<-mean(null.y[carrier==1])-mean(null.y[carrier==0])

one.diff <- function(x,y) {

xstar<-sample(x)

mean(y[xstar==1])-mean(y[xstar==0])

} # same function as before

many.diff <- replicate(10000, one.diff(x=carrier, y=null.y))

hist(many.diff)

abline(v=null.diff, lwd=2, col="purple")

mean(abs(many.diff) > abs(null.diff))

5.12

Example: null is false

Histogram of many.diff

many.diff

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4

0
50

0
10

00
15

00

4815/10000 difference exceeds observed difference: p ≈ 0.48.

5.13

Means: t-test

How do our permutations compare to classical t-tests?

> t.test(alt.y~carrier, var.equal=T)
Two Sample t-test

data: alt.y by carrier
t = -3.4696, df = 298, p-value = 0.0005983
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.6723963 -0.1856865

sample estimates:
mean in group 0 mean in group 1

0.1416750 0.5707164
> t.test(null.y~carrier, var.equal=T)

Two Sample t-test
data: null.y by carrier
t = -0.6945, df = 298, p-value = 0.4879
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3099976 0.1482715

sample estimates:
mean in group 0 mean in group 1

-0.09224281 -0.01137975

5.14

How many permutations?

With 10000 permutations the smallest possible p-value is 0.0001,

and the uncertainty near p = 0.05 is about ±0.4%

If we have multiple testing we may need much more precision.

Using 100,000 permutations reduces the uncertainty near p =

0.05 to ±0.1% and allows accurate p-values as small as 0.00001.

A useful strategy is to start with 1000 permutations and continue

to larger numbers only if p is small enough to be interesting, eg

p < 0.1.

Parallel computing of permutations is easy: just run R on multiple

computers.

5.15

Debugging

R error messages are sometimes opaque, because the error

occurs in a low-level function.

traceback() reports the entire call stack, which is useful for seeing

where the error really happened.

Suppose our outcome variable were actually a data frame with

one column rather than a vector:

> one.diff(x=carrier, y=ywrong)

Error in ‘[.data.frame‘(y, xstar == 1) : undefined columns selected

We didn’t know we were calling ‘[.data.frame‘, so we don’t

understand the message

5.16

Debugging

> traceback()

5: stop("undefined columns selected")

4: ‘[.data.frame‘(y, xstar == 1)

3: y[xstar == 1]

2: mean(y[xstar == 1])

1: one.diff(x=carrier, y=ywrong)

so the problem happens in our line of code mean(y[xstar==1])

and is a problem with computing y[xstar==1].

We might want to have a look at y and xstar

5.17

Debugging

The post-mortem debugger lets you look inside the code where

the error occurred.

> options(error=recover)

> one.diff(x=carrier, y=ywrong)

Error in ‘[.data.frame‘(y, xstar == 1) : undefined columns selected

Enter a frame number, or 0 to exit

1: one.diff(x=carrier, y=ywrong)

2: mean(y[xstar == 1])

3: y[xstar == 1]

4: ‘[.data.frame‘(y, xstar == 1)

Selection: 1

Called from: eval(expr, envir, enclos)

5.18

Debugging

Browse[1]> str(xstar)

num [1:300] 1 1 1 1 1 1 1 0 1 1 ...

Browse[1]> str(y)

’data.frame’: 300 obs. of 1 variable:

$ null.y: num 1.265 0.590 -0.722 0.676 -0.431 ...

Turn the post-mortem debugger off with

options(error=NULL)

5.19

Minimum p-value

Little point in permutation test for the mean: same result as

t-test

Permutation test is useful when we do not know how to compute

the distribution of a test statistic.

Suppose we test additive effects of 8 SNPs, one at a time, and

we want to know if the most significant association is real.

For any one SNP the z-statistic from a logistic regression model

has a Normal distribution.

We need to know the distribution of the most extreme of eight z-

statistics. This is not a standard distribution, but a permutation

test is still straightforward.

5.20

Minimum p-value

dat <- data.frame(y=rep(0:1,each=100),

SNP1=rbinom(200,size=2,prob=.1), SNP2=rbinom(200,size=2,prob=.2),

SNP3=rbinom(200,size=2,prob=.2), SNP4=rbinom(200,size=2,prob=.4),

SNP5=rbinom(200,size=2,prob=.1), SNP6=rbinom(200,size=2,prob=.2),

SNP7=rbinom(200,size=2, prob=.2), SNP8=rbinom(200,size=2,prob=.4))

> head(dat)

y SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8

1 0 0 0 0 0 0 1 0 0

2 0 0 1 0 1 0 1 0 2

3 0 0 1 0 1 1 0 0 0

4 0 0 0 1 1 0 0 0 0

5 0 0 1 0 1 1 0 0 0

6 0 0 0 0 1 0 1 0 1

5.21

Minimum p-value

oneZ<-function(outcome, snp){

model <- glm(outcome~snp, family=binomial)

coef(summary(model))["snp","z value"]

}

maxZ<-function(outcome, snps){

allZs <- sapply(snps,

function(this.snp){ oneZ(outcome, snp=this.snp) })

max(abs(allZs))

}

true.maxZ<-maxZ(outcome=dat$y, snps=dat[,-1])

manypermZ<-replicate(10000,

maxZ(outcome=sample(dat$y), snps=dat[,-1]))

5.22

Minimum p-value

5.23

Minimum p-value

The histogram shows the permutation distribution for the
maximum Z-statistic.

The blue curve is the theoretical distribution for one Z-statistic

The yellow curve is the theoretical distribution for the maximum
of eight independent Z-statistics.

Clearly the multiple testing is important: a Z of 2.5 gives p =
0.012 for a single test but p = 0.075 for the permutation test.

The theoretical distribution for the maximum has the right
range but the permutation distribution is quite discrete. The
discreteness is more serious with small sample size and rare SNPs.

[The theoretical distribution is not easy to compute except when
the tests are independent.]

5.24

More debugging

Permutation tests on other people’s code might reveal a lack of
robustness.

For example, a permutation might result in all controls being
homozygous for one of the SNPs and this might give an error
message

We can work around this with tryCatch()

oneZ<-function(outcome, snp){

tryCatch({model <- glm(outcome~snp, family=binomial())

coef(summary(model))["snp","z value"]},

error=function(e) NA

)

}

Now oneZ() will return NA if there is an error in the model fitting.

5.25

Caution: wrong null

Permutation tests cannot solve all problems: they are valid only

when the null hypothesis is ‘no association’

Suppose we are studying a set of SNPs that each have

some effect on outcome and we want to test for interactions

(epistasis).

Permuting the genotype data would break the links between

genotype and outcome and created shuffled data with no main

effects of SNPs.

Even if there are no interactions the shuffled data will look

different from the real data.

5.26

Caution: weak null hypothesis

A polymorphism could increase the variability of an outcome but
not change the mean.

In this case the strong null hypothesis is false, but the hypothesis
of equal means is still true.

• If we want to detect this difference the permutation test is
unsuitable because it has low power

• If we do not want to detect this difference the permutation
test is invalid, because it does not have the correct Type I
error rate.

When groups are the same size the Type I error rate is typically
close to the nominal level, otherwise it can be too high or too
low.

To illustrate this we need many replications of a permutation
test. We will do 1000 permutation tests for a mean, each with
1000 permutations.

5.27

meandiff<-function(x,trt){

mean(x[trt==1])-mean(x[trt==2])

}

meanpermtest<-function(x,trt,n=1000){

observed<-meandiff(x,trt)

perms<-replicate(n, meandiff(x, sample(trt)))

mean(abs(observed)>abs(perms))

}

trt1<-rep(c(1,2),c(10,90))

perm.p<-replicate(1000, {

x1<-rnorm(100, 0, s=trt1)

meanpermtest(x1,trt1)})

table(cut(perm.p,c(0,.05,.1,.5,.9,.95,1)))/1000

5.28

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

86 99 564 244 6 0

The p-values are too small, relative to a uniform distribution. If

we reverse the standard errors we get

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

27 28 275 354 67 249

If the two groups each have 50 observations we get

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

50 45 403 407 52 43

which is much better.

5.29

	Overview
	Testing
	Simulation
	Tools
	Permutations
	Example: null is true
	Example: null is false
	Testing: Mean difference (v1)
	Means: permutation test
	Example: null is false
	Testing: Mean difference (v2)
	Example: null is false
	Means: t-test
	How many permutations?
	Debugging
	Minimum p-value
	More debugging
	Caution: wrong null
	Caution: weak null hypothesis
	

