
4. Model fitting

Thomas Lumley

Ken Rice

Universities of Washington and Auckland

Seattle, July 2013

Disclaimer

We can’t teach regression in one session. But we will cover;

• Use of common regression and testing commands, in simple

genetic settings

• Some useful post-processing commands, after the regression

is done

NB Because regression is a vast subject, the help files for

commands in this session are also vast. If you are new to

regression, Dalgaard’s book is a good place to look for more

material.

4.1

Comparing means: two groups

Simple data (below) suggests a simple model;

• All outcomes (Y) independent, i.e.

one from each person in your study

• Within each group (defined by G)

there is a mean outcome

• ... are the means different?

The t-test is the standard statistical tool for making this
comparison. Common to recode G (carrier/non-carrier) as 1/0
– and to call it X, or covariate/predictor/dependent variable.

4.2

Comparing means: two groups

Straightforward R command to do this;

> t.test(y~g, data=mydata)

Welch Two Sample t-test

data: y by g
t = 2.4841, df = 995.723, p-value = 0.01315
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2320599 1.9775503

sample estimates:
mean in group carrier mean in group non-carrier

1.5572602 0.4524551

• Y ∼ X formula, just as in graphics

• Confidence interval is for difference in means (1st - 2nd)

• p-value is two-sided (see alternative) and does not assume

equal variances (see var.equal)

• Also accepts vector input, for one-sample & paired tests

4.3

Comparing means: multiple groups

In a new study, with more groups, how do the means compare?

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

... need to make/combine two comparisons, here

4.4

Comparing means: multiple groups

Assuming we have genotypes G coded ”AA”/”Aa”/”aa”;

> aov1 <- aov(chol ~ g, data=mynewdata)

> aov1
Call:

aov(formula = chol ~ g)
Terms:

gg Residuals
Sum of Squares 193.0185 135.4168
Deg. of Freedom 2 297
Residual standard error: 0.6752397
Estimated effects may be unbalanced

> summary(aov1)
Df Sum Sq Mean Sq F value Pr(>F)

gg 2 193.0 96.51 211.7 <2e-16 ***
Residuals 297 135.4 0.46

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This is Analysis of Variance. Use model.tables(aov1, type="means")

to see and compare the means (!)

4.5

Comparing means: multiple groups

A more direct way to say the same thing;

Mean(Y) = β0 + βAa × (G == Aa) + βaa × (G == aa)

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

0 1 0
0 0 1

βAa
βaa

β0

4.6

Comparing means: multiple groups

With genotypes stored as a factor, we can perform the inference

using lm() – for Linear Model;

> lm1 <- lm(chol~g, data=mynewdata)
> summary(lm1)
Call:
lm(formula = chol ~ g)
Residuals:

Min 1Q Median 3Q Max
-1.70228 -0.48623 -0.02692 0.47186 1.79321
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.06757 0.06752 1.001 0.318
gAa 1.37916 0.09549 14.442 <2e-16 ***
gaa 1.90149 0.09549 19.912 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6752 on 297 degrees of freedom
Multiple R-squared: 0.5877, Adjusted R-squared: 0.5849
F-statistic: 211.7 on 2 and 297 DF, p-value: < 2.2e-16

4.7

Comparing means: multiple groups

Notes on this fairly verbose summary();

• lm() takes formula input

• Get same F statistic as analysis of variance – doing the same

analysis, comparing means

• ‘Wald tests’ of individual coefficients also given; is the

intercept zero, is the difference between mean Y in Aa and

AA zero?

• Alpha-numerically ‘first’ level of factor is chosen as reference

– unless you specify otherwise, when making a factor(). Or

relevel() an existing factor

• This analysis assumes variance of outcomes is constant

across the groups – slightly different to the default t-test.

Turn those #&%ing stars off with options(show.signif.stars=FALSE)

4.8

Comparing means: multiple groups

A more common use of lm();

Mean(Y) = γ0 + γ1 ×#minor alleles

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

γ1

γ1

0 1 2

γ0

4.9

Comparing means: multiple groups

The work here is constructing the 0/1/2 covariate; one approach

(below) exploits R’s ‘coercion’ of TRUE/FALSE to 1/0, in math

expressions;

> mynewdata$g.num <- with(mynewdata, 0 + 1*(g=="Aa") + 2*(g=="aa"))
> lm2 <- lm(chol~g.num, data=mynewdata)
> summary(lm2)
Call:
lm(formula = chol ~ g.num)

Residuals:
Min 1Q Median 3Q Max

-1.84509 -0.47012 -0.08037 0.52075 1.66926

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21037 0.06426 3.274 0.00119
g.num 0.95074 0.04977 19.101 < 2e-16

Residual standard error: 0.7039 on 298 degrees of freedom
Multiple R-squared: 0.5504, Adjusted R-squared: 0.5489
F-statistic: 364.9 on 1 and 298 DF, p-value: < 2.2e-16

4.10

Comparing means: multiple groups

As well as the point estimates and p-values, we probably want

confidence intervals for the parameters;

> confint(lm2)
2.5 % 97.5 %

(Intercept) 0.08391672 0.3368275
g.num 0.85279147 1.0486953

For tests that do not require constant variance – but that do

require large sample sizes;

> library("sandwich")
> library("lmtest")
> waldtest(lm2, "g.num", vcov=vcovHC(lm2))
Wald test

Model 1: chol ~ g.num
Model 2: chol ~ 1

Res.Df Df F Pr(>F)
1 298
2 299 -1 396.59 < 2.2e-16

4.11

Comparing means: multiple groups

It is possible to extract most of what you need from lm2 or

summary(lm2) using the $ syntax. But it’s easier to use extractor

functions;

• coef(); the estimated coefficients

• predict(); predicted values at given covariates

• fitted.values(); fitted values for original data

• residuals(); residuals for original data

• confint(); see earlier slides

• vcov(); variance-covariance matrix for the point estimates

• vcovHC(); robust version – in the sandwich package

• AIC(), BIC(); An Information Criterion (and another one)

These can also be used on output from other regression

functions. See also ?influence.measures for diagnostic tools.

4.12

Comparing means: multiple groups

To fit the ‘dominant model’;

Mean(Y) = δ0 + δ1 × (G 6= AA)

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

δ1

0 1 1

δ0

...define g.num2 <- g!="AA" and regress Y∼g.num2.

4.13

Comparing means: multiple groups

To fit the ‘recessive model’;

Mean(Y) = ζ0 + ζ1 × (G == AA)

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

ζ1

0 0 1

ζ0

...define g.num3 <- g=="AA" and regress Y∼g.num3.

4.14

Notes

• There are many ways to convert stored genotypes to the
0/1/2 variables R uses in regression

• Check you got it right, before doing regression. Use e.g.
table() to ensure everything matches up

• Regressing on a factor, R actually sets up multiple binary
covariates, and regresses on each of them

• When missing values are present in outcome or any covariates
in the formula, R drops that row of the data before starting
analysis

• Intercepts are implicit in R regression formula. Should you
need to, take them out with e.g. Y∼ -1 + g. See ?formula

for more tricks like this

4.15

Comparing means: adjustments

Imagine, in a huge sample, we see association between phenotype
and genotype;

G

Y

AA Aa aa

... lm(y∼g) would report a positive slope, very unlikely by chance
alone – and this is statistically ‘right’.

4.16

Comparing means: adjustments

But this is scientifically unimpressive, if breaking the same data
down by ancestry group we see this;

G

Y

AA Aa aa

The effect is known as population stratification – statisticians
know it as confounding.

4.17

Comparing means: adjustments

To fit models where

Mean(Y) = β0 + β1 ×G+ β2 × Z

the R formula syntax is

y ∼ g + z

... so on the previous slide, with Z = (colour==red), the g

coefficient (β1) tells us about how the Mean(Y) varies with G in
both red and blue populations; should fit β1 ≈ 0, here.

To adjust for multiple covariates (e.g. age & sex & different
principal components of genotype data, representing ancestry);

y ∼ g + age + sex + pc1 + pc2 + pc3 + pc4 + pc5

Note PCs can be obtained with princomp() and/or prcomp().

4.18

Comparing means: interaction

When we have data on genotype (G=0/1/2) and environment

(0≤E≤1) – here presented in two sub-optimal ways;

(These results using persp() and bwplot())

4.19

Comparing means: interaction

And two simpler ways; (using xyplot() and plot())

Does the slope of the Y − E relationship differ according to G?

4.20

Comparing means: interaction

With e.g. G=number of minor alleles, we might fit

Mean(Y) = β0 + β1G+ β2E + β3G× E

In R this is achieved by

> lm3 <- lm(y~ g + e + g:e, data=mylastdata)
> summary(lm3)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.23908 0.01999 11.96 <2e-16
g -0.29304 0.01814 -16.16 <2e-16
e -0.83177 0.03633 -22.89 <2e-16
g:e 1.01037 0.03431 29.45 <2e-16

• In formulas, colons (:) denote interaction

• Shorthand y∼g*e denotes interactions and all main effects

• For math in formulas, can use I() to insulate, for example

y∼ g*I(sbp-dbp), for interactions with pulse pressure

4.21

Comparing odds

Logistic regression is the ‘default’ analysis for binary outcomes

Outcome (Y) Type Regression Scale
Cholesterol

Blood Pressure Continuous Linear Difference in Mean
BMI

Death
Stroke Binary Logistic Ratio of odds

BMI>30

What are odds? Really just probability...

4.22

Comparing odds: what are odds?

Odds are a [gambling-friendly] measure of chance;
P

ro
b

of
 s

ur
vi

va
l,

10
yr

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AA Aa aa

66% 2
33% 1

50% 1
50% 1

10% 1
90% 9

– what are odds ratios?
4.23

Comparing odds: what are odds?

Odds are a [gambling-friendly] measure of chance;
P

ro
b

of
 s

ur
vi

va
l,

10
 y

rs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AA Aa aa

66% 2
33% 1

50% 1
50% 1

10% 1
90% 9

Prob(death)

– what are odds ratios?
4.23

Comparing odds: what are odds?

Odds are a [gambling-friendly] measure of chance;
P

ro
b

of
 s

ur
vi

va
l,

10
 y

rs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AA Aa aa

66% 2
33% 1

50% 1
50% 1

10% 1
90% 9

Odds(death)

Prob(death)

– so what are odds ratios?

4.23

Comparing odds: what are odds?

Using the data from the previous slide, with g stored as a factor,
levels ”AA”/”Aa”/”aa”;

> glm1 <- glm(dead10yrs ~g, family=binomial, data=myposthocdata)

> coef(glm1)

(Intercept) gAa gaa

-0.6931472 0.6931472 2.8903717

• First term is estimate of log odds in reference group (AA) –
to transform to an estimate of odds, use e−0.6931=0.5

• Other terms are estimates of log odds ratios, relative to the
reference group; to transform to OR, use exp() to obtain
e0.6931 = 2, e2.8904 = 18

• If/when you forget the family=binomial argument, default is
linear regression, also given by lm()

4.24

Comparing odds: what are odds?

Confidence intervals and p-values are obtained as with lm()

output – as here for the log odds ratios;

> confint(glm1)
Waiting for profiling to be done...

2.5 % 97.5 %
gAa 0.1242838 1.2723849
gaa 2.1529671 3.7154673
> confint.default(glm1)

2.5 % 97.5 %
gAa 0.1201986 1.2660957
gaa 2.1148912 3.6658523
> summary(glm1)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
gAa 0.6931 0.2923 2.371 0.01773
gaa 2.8904 0.3957 7.305 2.77e-13

• Most users expect the confint.default() intervals

• Use exp() on confint() output (either version) to get

intervals for the corresponding odds ratios.

4.25

Other model-fitting commands

For an inclusive definition of ‘model’;

• fisher.test() and chisq.test() perform Fisher’s exact test

and Pearson’s χ2 test, on contingency tables

• coxph() in the survival package, for Cox Proportional

Hazards regression

• gee() in the gee package, for Generalized Estimating Equa-

tions

• lmer() and glmer() in the lme4 package fit (Generalized)

Linear Mixed Models

• ns() and bs() in the splines package calculate natural and

B-splines

Search the R/Bioconductor sites to see how to fit many other

models.

4.26

	Disclaimer
	Comparing means: two groups
	Comparing means: multiple groups
	Notes
	Comparing means: adjustments
	Comparing means: interaction
	Comparing odds
	Comparing odds: what are odds?
	Other model-fitting commands

