

4. Model fitting

Thomas Lumley Ken Rice

Universities of Washington and Auckland

Seattle, July 2013

Disclaimer

We can't teach regression in one session. But we will cover;

- Use of common regression and testing commands, in simple genetic settings
- Some useful post-processing commands, after the regression is done

NB Because regression is a vast subject, the help files for commands in this session are also vast. If you are new to regression, Dalgaard's book is a good place to look for more material.

Comparing means: two groups

Simple data (below) suggests a simple model;

• All outcomes (Y) independent, i.e. one from each person in your study

• Within each group (defined by G) there is a mean outcome

• ... are the means different?

The *t*-test is the standard statistical tool for making this comparison. Common to recode G (carrier/non-carrier) as 1/0- and to call it X, or covariate/predictor/dependent variable.

Comparing means: two groups

Straightforward R command to do this;

- $Y \sim X$ formula, just as in graphics
- Confidence interval is for difference in means (1st 2nd)
- *p*-value is two-sided (see alternative) and does not assume equal variances (see var.equal)
- Also accepts vector input, for one-sample & paired tests

In a new study, with more groups, how do the means compare?

... need to make/combine two comparisons, here

```
Assuming we have genotypes G coded "AA" /" Aa" /" aa";
```

```
> aov1 <- aov( chol ~ g, data=mynewdata )</pre>
> aov1
Call:
  aov(formula = chol ~ g)
Terms:
                     gg Residuals
Sum of Squares 193.0185 135.4168
Deg. of Freedom
                      2
                              297
Residual standard error: 0.6752397
Estimated effects may be unbalanced
> summary(aov1)
            Df Sum Sq Mean Sq F value Pr(>F)
           2 193.0 96.51 211.7 <2e-16 ***
gg
Residuals 297 135.4 0.46
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

This is Analysis of Variance. Use model.tables(aov1, type="means") to see and compare the means (!)

A more direct way to say the same thing;

 $Mean(Y) = \beta_0 + \beta_{Aa} \times (G = Aa) + \beta_{aa} \times (G = aa)$

With genotypes stored as a factor, we can perform the inference using lm() – for Linear Model;

```
> lm1 <- lm(chol~g, data=mynewdata)</pre>
> summary(lm1)
Call:
lm(formula = chol ~ g)
Residuals:
    Min
              10 Median
                               30
                                      Max
-1.70228 - 0.48623 - 0.02692 0.47186 1.79321
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.06757 0.06752 1.001 0.318
        1.37916 0.09549 14.442 <2e-16 ***
gAa
          1.90149 0.09549 19.912 <2e-16 ***
gaa
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 0.6752 on 297 degrees of freedom Multiple R-squared: 0.5877, Adjusted R-squared: 0.5849 F-statistic: 211.7 on 2 and 297 DF, p-value: < 2.2e-16 Notes on this fairly verbose summary();

- lm() takes formula input
- Get same F statistic as analysis of variance doing the same analysis, comparing means
- 'Wald tests' of individual coefficients also given; is the intercept zero, is the difference between mean Y in Aa and AA zero?
- Alpha-numerically 'first' level of factor is chosen as reference

 unless you specify otherwise, when making a factor(). Or
 relevel() an existing factor
- This analysis assumes variance of outcomes *is* constant across the groups slightly different to the default *t*-test.

Turn those #&%ing stars off with options(show.signif.stars=FALSE)

A more common use of lm();

 $Mean(Y) = \gamma_0 + \gamma_1 \times \#minor$ alleles

The work here is constructing the 0/1/2 covariate; one approach (below) exploits R's 'coercion' of TRUE/FALSE to 1/0, in math expressions;

```
> mynewdatag.num <- with(mynewdata, 0 + 1*(g=="Aa") + 2*(g=="aa"))
> lm2 <- lm(chol~g.num, data=mynewdata)</pre>
> summary(lm2)
Call:
lm(formula = chol ~ g.num)
Residuals:
              10 Median
                                30
     Min
                                        Max
-1.84509 - 0.47012 - 0.08037 0.52075 1.66926
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.21037 0.06426
                                 3.274 0.00119
            0.95074 0.04977 19.101 < 2e-16
g.num
Residual standard error: 0.7039 on 298 degrees of freedom
Multiple R-squared: 0.5504, Adjusted R-squared: 0.5489
F-statistic: 364.9 on 1 and 298 DF, p-value: < 2.2e-16
```

As well as the point estimates and p-values, we probably want confidence intervals for the parameters;

For tests that do not require constant variance – but that do require large sample sizes;

It is possible to extract most of what you need from 1m2 or summary(1m2) using the \$ syntax. But it's easier to use extractor functions;

- coef(); the estimated coefficients
- predict(); predicted values at given covariates
- fitted.values(); fitted values for original data
- residuals(); residuals for original data
- confint(); see earlier slides
- vcov(); variance-covariance matrix for the point estimates
- vcovHC(); robust version in the sandwich package
- AIC(), BIC(); An Information Criterion (and another one)

These can also be used on output from other regression functions. See also ?influence.measures for diagnostic tools.

To fit the 'dominant model';

 $Mean(Y) = \delta_0 + \delta_1 \times (G \neq AA)$

...define g.num2 <- g!="AA" and regress Y~g.num2.

To fit the 'recessive model';

 $Mean(Y) = \zeta_0 + \zeta_1 \times (G = = AA)$

...define g.num3 <- g=="AA" and regress $Y \sim g.num3$.

4.14

Notes

- There are many ways to convert stored genotypes to the 0/1/2 variables R uses in regression
- Check you got it right, before doing regression. Use e.g. table() to ensure everything matches up
- Regressing on a factor, R actually sets up multiple binary covariates, and regresses on each of them
- When missing values are present in outcome or any covariates in the formula, R drops that row of the data before starting analysis
- Intercepts are implicit in R regression formula. Should you need to, take them out with e.g. $Y \sim -1 + g$. See ?formula for more tricks like this

Comparing means: adjustments

Imagine, in a huge sample, we see association between phenotype and genotype;

... $lm(y \sim g)$ would report a positive slope, very unlikely by chance alone – and this is statistically 'right'.

Comparing means: adjustments

But this is *scientifically* unimpressive, if breaking the same data down by ancestry group we see this;

The effect is known as *population stratification* – statisticians know it as *confounding*.

Comparing means: adjustments

To fit models where

$$Mean(Y) = \beta_0 + \beta_1 \times G + \beta_2 \times Z$$

the R formula syntax is

$$y \sim g + z$$

... so on the previous slide, with Z = (colour = red), the g coefficient (β_1) tells us about how the Mean(Y) varies with G in both red and blue populations; should fit $\beta_1 \approx 0$, here.

To adjust for multiple covariates (e.g. age & sex & different principal components of genotype data, representing ancestry);

$$y \sim g + age + sex + pc1 + pc2 + pc3 + pc4 + pc5$$

Note PCs can be obtained with princomp() and/or prcomp().

Comparing means: interaction

When we have data on genotype (G=0/1/2) and environment $(0 \le E \le 1)$ – here presented in two sub-optimal ways;

(These results using persp() and bwplot())

Comparing means: interaction

And two simpler ways; (using xyplot() and plot())

Does the slope of the Y - E relationship differ according to G?

Comparing means: interaction

With e.g. G=number of minor alleles, we might fit

```
Mean(Y) = \beta_0 + \beta_1 G + \beta_2 E + \beta_3 G \times E
```

- In formulas, colons (:) denote interaction
- Shorthand $y \sim g * e$ denotes interactions and all main effects
- For math in formulas, can use I() to *insulate*, for example y~ g*I(sbp-dbp), for interactions with pulse pressure

Logistic regression is the 'default' analysis for binary outcomes

Outcome (Y)	Туре	Regression	Scale
Cholesterol			
Blood Pressure	Continuous	Linear	Difference in Mean
BMI			
Death Stroke BMI>30	Binary	Logistic	Ratio of odds

What are odds? Really just probability...

Odds are a [gambling-friendly] measure of chance;

Odds are a [gambling-friendly] measure of chance;

Odds are a [gambling-friendly] measure of chance;

- so what are odds ratios?

Using the data from the previous slide, with g stored as a factor, levels "AA" /" Aa" /" aa";

> glm1 <- glm(dead10yrs ~g, family=binomial, data=myposthocdata)
> coef(glm1)
(Intercept) gAa gaa
-0.6931472 0.6931472 2.8903717

- First term is estimate of *log odds* in reference group (AA) to transform to an estimate of odds, use $e^{-0.6931}=0.5$
- Other terms are estimates of *log odds ratios*, relative to the reference group; to transform to OR, use exp() to obtain $e^{0.6931} = 2, e^{2.8904} = 18$
- If/when you forget the family=binomial argument, default is linear regression, also given by lm()

Confidence intervals and p-values are obtained as with lm() output – as here for the log odds ratios;

```
> confint(glm1)
Waiting for profiling to be done...
                2.5 %
                          97.5 %
            0.1242838 1.2723849
gAa
            2.1529671 3.7154673
gaa
> confint.default(glm1)
                2.5 %
                          97.5 %
            0.1201986 1.2660957
gAa
            2.1148912 3.6658523
gaa
> summary(glm1)
Coefficients:
           Estimate Std. Error z value Pr(|z|)
                        0.2923 2.371 0.01773
             0.6931
gAa
                        0.3957 7.305 2.77e-13
             2.8904
gaa
```

- Most users expect the confint.default() intervals
- Use exp() on confint() output (either version) to get intervals for the corresponding odds ratios.

Other model-fitting commands

For an inclusive definition of 'model';

- fisher.test() and chisq.test() perform Fisher's exact test and Pearson's χ^2 test, on contingency tables
- coxph() in the survival package, for Cox Proportional Hazards regression
- gee() in the gee package, for Generalized Estimating Equations
- lmer() and glmer() in the lme4 package fit (Generalized) Linear Mixed Models
- ns() and bs() in the splines package calculate natural and B-splines

Search the R/Bioconductor sites to see how to fit many other models.