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Disclaimer

We can’t teach regression in one session. But we will cover;

• Use of common regression and testing commands, in simple

genetic settings

• Some useful post-processing commands, after the regression

is done

NB Because regression is a vast subject, the help files for

commands in this session are also vast. If you are new to

regression, Dalgaard’s book is a good place to look for more

material.
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Comparing means: two groups

Simple data (below) suggests a simple model;

• All outcomes (Y ) independent, i.e.

one from each person in your study

• Within each group (defined by G)

there is a mean outcome

• ... are the means different?

The t-test is the standard statistical tool for making this
comparison. Common to recode G (carrier/non-carrier) as 1/0
– and to call it X, or covariate/predictor/dependent variable.
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Comparing means: two groups

Straightforward R command to do this;

> t.test(y~g, data=mydata)

Welch Two Sample t-test

data: y by g
t = 2.4841, df = 995.723, p-value = 0.01315
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2320599 1.9775503

sample estimates:
mean in group carrier mean in group non-carrier

1.5572602 0.4524551

• Y ∼ X formula, just as in graphics

• Confidence interval is for difference in means (1st - 2nd)

• p-value is two-sided (see alternative) and does not assume

equal variances (see var.equal)

• Also accepts vector input, for one-sample & paired tests
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Comparing means: multiple groups

In a new study, with more groups, how do the means compare?
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Comparing means: multiple groups

Assuming we have genotypes G coded ”AA”/”Aa”/”aa”;

> aov1 <- aov( chol ~ g, data=mynewdata )

> aov1
Call:

aov(formula = chol ~ g)
Terms:

gg Residuals
Sum of Squares 193.0185 135.4168
Deg. of Freedom 2 297
Residual standard error: 0.6752397
Estimated effects may be unbalanced

> summary(aov1)
Df Sum Sq Mean Sq F value Pr(>F)

gg 2 193.0 96.51 211.7 <2e-16 ***
Residuals 297 135.4 0.46
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This is Analysis of Variance. Use model.tables(aov1, type="means")

to see and compare the means (!)
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Comparing means: multiple groups

A more direct way to say the same thing;

Mean(Y ) = β0 + βAa × (G == Aa) + βaa × (G == aa)
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Comparing means: multiple groups

With genotypes stored as a factor, we can perform the inference

using lm() – for Linear Model;

> lm1 <- lm(chol~g, data=mynewdata)
> summary(lm1)
Call:
lm(formula = chol ~ g)
Residuals:

Min 1Q Median 3Q Max
-1.70228 -0.48623 -0.02692 0.47186 1.79321
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.06757 0.06752 1.001 0.318
gAa 1.37916 0.09549 14.442 <2e-16 ***
gaa 1.90149 0.09549 19.912 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6752 on 297 degrees of freedom
Multiple R-squared: 0.5877, Adjusted R-squared: 0.5849
F-statistic: 211.7 on 2 and 297 DF, p-value: < 2.2e-16
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Comparing means: multiple groups

Notes on this fairly verbose summary();

• lm() takes formula input

• Get same F statistic as analysis of variance – doing the same

analysis, comparing means

• ‘Wald tests’ of individual coefficients also given; is the

intercept zero, is the difference between mean Y in Aa and

AA zero?

• Alpha-numerically ‘first’ level of factor is chosen as reference

– unless you specify otherwise, when making a factor(). Or

relevel() an existing factor

• This analysis assumes variance of outcomes is constant

across the groups – slightly different to the default t-test.

Turn those #&%ing stars off with options(show.signif.stars=FALSE)
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Comparing means: multiple groups

A more common use of lm();

Mean(Y ) = γ0 + γ1 ×#minor alleles
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Comparing means: multiple groups

The work here is constructing the 0/1/2 covariate; one approach

(below) exploits R’s ‘coercion’ of TRUE/FALSE to 1/0, in math

expressions;

> mynewdata$g.num <- with(mynewdata, 0 + 1*(g=="Aa") + 2*(g=="aa"))
> lm2 <- lm(chol~g.num, data=mynewdata)
> summary(lm2)
Call:
lm(formula = chol ~ g.num)

Residuals:
Min 1Q Median 3Q Max

-1.84509 -0.47012 -0.08037 0.52075 1.66926

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21037 0.06426 3.274 0.00119
g.num 0.95074 0.04977 19.101 < 2e-16

Residual standard error: 0.7039 on 298 degrees of freedom
Multiple R-squared: 0.5504, Adjusted R-squared: 0.5489
F-statistic: 364.9 on 1 and 298 DF, p-value: < 2.2e-16
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Comparing means: multiple groups

As well as the point estimates and p-values, we probably want

confidence intervals for the parameters;

> confint(lm2)
2.5 % 97.5 %

(Intercept) 0.08391672 0.3368275
g.num 0.85279147 1.0486953

For tests that do not require constant variance – but that do

require large sample sizes;

> library("sandwich")
> library("lmtest")
> waldtest(lm2, "g.num", vcov=vcovHC(lm2) )
Wald test

Model 1: chol ~ g.num
Model 2: chol ~ 1

Res.Df Df F Pr(>F)
1 298
2 299 -1 396.59 < 2.2e-16
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Comparing means: multiple groups

It is possible to extract most of what you need from lm2 or

summary(lm2) using the $ syntax. But it’s easier to use extractor

functions;

• coef(); the estimated coefficients

• predict(); predicted values at given covariates

• fitted.values(); fitted values for original data

• residuals(); residuals for original data

• confint(); see earlier slides

• vcov(); variance-covariance matrix for the point estimates

• vcovHC(); robust version – in the sandwich package

• AIC(), BIC(); An Information Criterion (and another one)

These can also be used on output from other regression

functions. See also ?influence.measures for diagnostic tools.
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Comparing means: multiple groups

To fit the ‘dominant model’;

Mean(Y ) = δ0 + δ1 × (G 6= AA)
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...define g.num2 <- g!="AA" and regress Y∼g.num2.
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Comparing means: multiple groups

To fit the ‘recessive model’;

Mean(Y ) = ζ0 + ζ1 × (G == AA)
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...define g.num3 <- g=="AA" and regress Y∼g.num3.
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Notes

• There are many ways to convert stored genotypes to the
0/1/2 variables R uses in regression

• Check you got it right, before doing regression. Use e.g.
table() to ensure everything matches up

• Regressing on a factor, R actually sets up multiple binary
covariates, and regresses on each of them

• When missing values are present in outcome or any covariates
in the formula, R drops that row of the data before starting
analysis

• Intercepts are implicit in R regression formula. Should you
need to, take them out with e.g. Y∼ -1 + g. See ?formula

for more tricks like this
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Comparing means: adjustments

Imagine, in a huge sample, we see association between phenotype
and genotype;

G

Y

AA Aa aa

... lm(y∼g) would report a positive slope, very unlikely by chance
alone – and this is statistically ‘right’.
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Comparing means: adjustments

But this is scientifically unimpressive, if breaking the same data
down by ancestry group we see this;

G

Y

AA Aa aa

The effect is known as population stratification – statisticians
know it as confounding.
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Comparing means: adjustments

To fit models where

Mean(Y ) = β0 + β1 ×G+ β2 × Z

the R formula syntax is

y ∼ g + z

... so on the previous slide, with Z = (colour==red), the g

coefficient (β1) tells us about how the Mean(Y ) varies with G in
both red and blue populations; should fit β1 ≈ 0, here.

To adjust for multiple covariates (e.g. age & sex & different
principal components of genotype data, representing ancestry);

y ∼ g + age + sex + pc1 + pc2 + pc3 + pc4 + pc5

Note PCs can be obtained with princomp() and/or prcomp().
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Comparing means: interaction

When we have data on genotype (G=0/1/2) and environment

(0≤E≤1) – here presented in two sub-optimal ways;

(These results using persp() and bwplot() )
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Comparing means: interaction

And two simpler ways; (using xyplot() and plot())

Does the slope of the Y − E relationship differ according to G?
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Comparing means: interaction

With e.g. G=number of minor alleles, we might fit

Mean(Y ) = β0 + β1G+ β2E + β3G× E

In R this is achieved by

> lm3 <- lm(y~ g + e + g:e, data=mylastdata)
> summary(lm3)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.23908 0.01999 11.96 <2e-16
g -0.29304 0.01814 -16.16 <2e-16
e -0.83177 0.03633 -22.89 <2e-16
g:e 1.01037 0.03431 29.45 <2e-16

• In formulas, colons (:) denote interaction

• Shorthand y∼g*e denotes interactions and all main effects

• For math in formulas, can use I() to insulate, for example

y∼ g*I(sbp-dbp), for interactions with pulse pressure
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Comparing odds

Logistic regression is the ‘default’ analysis for binary outcomes

Outcome (Y ) Type Regression Scale
Cholesterol

Blood Pressure Continuous Linear Difference in Mean
BMI

Death
Stroke Binary Logistic Ratio of odds

BMI>30

What are odds? Really just probability...
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Comparing odds: what are odds?

Odds are a [gambling-friendly] measure of chance;
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– what are odds ratios?
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Comparing odds: what are odds?

Odds are a [gambling-friendly] measure of chance;
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– so what are odds ratios?
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Comparing odds: what are odds?

Using the data from the previous slide, with g stored as a factor,
levels ”AA”/”Aa”/”aa”;

> glm1 <- glm( dead10yrs ~g, family=binomial, data=myposthocdata)

> coef(glm1)

(Intercept) gAa gaa

-0.6931472 0.6931472 2.8903717

• First term is estimate of log odds in reference group (AA) –
to transform to an estimate of odds, use e−0.6931=0.5

• Other terms are estimates of log odds ratios, relative to the
reference group; to transform to OR, use exp() to obtain
e0.6931 = 2, e2.8904 = 18

• If/when you forget the family=binomial argument, default is
linear regression, also given by lm()
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Comparing odds: what are odds?

Confidence intervals and p-values are obtained as with lm()

output – as here for the log odds ratios;

> confint(glm1)
Waiting for profiling to be done...

2.5 % 97.5 %
gAa 0.1242838 1.2723849
gaa 2.1529671 3.7154673
> confint.default(glm1)

2.5 % 97.5 %
gAa 0.1201986 1.2660957
gaa 2.1148912 3.6658523
> summary(glm1)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
gAa 0.6931 0.2923 2.371 0.01773
gaa 2.8904 0.3957 7.305 2.77e-13

• Most users expect the confint.default() intervals

• Use exp() on confint() output (either version) to get

intervals for the corresponding odds ratios.
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Other model-fitting commands

For an inclusive definition of ‘model’;

• fisher.test() and chisq.test() perform Fisher’s exact test

and Pearson’s χ2 test, on contingency tables

• coxph() in the survival package, for Cox Proportional

Hazards regression

• gee() in the gee package, for Generalized Estimating Equa-

tions

• lmer() and glmer() in the lme4 package fit (Generalized)

Linear Mixed Models

• ns() and bs() in the splines package calculate natural and

B-splines

Search the R/Bioconductor sites to see how to fit many other

models.
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