
10. Interfacing R

Thomas Lumley

Ken Rice

Universities of Auckland and Washington

Seattle, July 2012

Interfacing R

With Bioconductor, R can do a huge proportion of the analyses

you’ll want – but not everything

• Intensive (or anachronistic) C++, FORTRAN work, e.g. for

pedigrees

• ‘Speciality’ analyses; some need different computing archi-

tecture

• Fancy interactive graphics

R can be used to ‘manage’ other software. Today we’ll illustrate

some favorite examples

10.1

Starting other software

NB these commands are for Windows only; see help files for e.g.

Unix versions

• shell() does the equivalent of a DOS-style command

• shell("notepad") starts the Notepad editor

• If the command takes arguments, put them in the same

string;

shell("notepad myfile.txt")

The system() and shell.exec() commands do much the same

thing.

10.2

Starting other software

Some more options for shell();

• wait; R ‘hangs’ until completion

• translate; makes forward and backslashes work properly

• intern; return the output as an R object

For other options see the system() help page, for example
minimized=TRUE.

Paths for files can be a little messy; shell() starts in your working
directory (find it using getwd()). For files outside of this, give
the full pathway.

paste() is useful, if you need to do a lot of this sort of thing.

10.3

Examples

Code for a really mundane job;

for(i in 1:100){

infile <- paste("gene",i,"data.txt", sep="")

outfile <- paste("gene",i,"phase.out", sep="")

shell(paste("PHASE",infile,outfile))

}

... this will churn away for hours, although with no error-control.

Why did we use wait=TRUE here? (the default)

10.4

Examples

• WinBUGS implements Bayesian analyse; it’s not super-fast

but is very flexible

• It needs special (& clever) architecture to achieve this

• WinBUGS’ input, output, graphics are all rather clunky

• R is better; so R2WinBUGS calls WinBUGS for the difficult bits,

and does all the ‘translation’ itself

• This is done with (repeated) use of system()

10.5

Outline

Many programs already exist to do useful analyses. It is more

convenient to call them from R than to rewrite them in R.

Sometimes this involves calling the C code directly, sometimes

just involves using R to write input files for another program

Examples:

• Graphviz: drawing networks

• PMF: input files for ancient Fortran software

• Google Earth: displaying outliers in context.

10.6

Drawing networks

GraphViz (http://www.graphviz.org) is a free program for draw-

ing networks, written by AT&T researchers.

Its input format looks like

"15" [shape= box,regular=1 ,height= 0.5 ,width= 0.75 ,style=filled,color= grey] ;
"16" [shape= circle ,height= 0.5 ,width= 0.75 ,style=filled,color= grey] ;
"2x3" [shape=diamond,style=filled,label="",height=.1,width=.1] ;
"2" -> "2x3" [dir=none,weight=1] ;
"3" -> "2x3" [dir=none,weight=1] ;
"2x3" -> "1" [dir=none,weight=2] ;
"2x3" -> "4" [dir=none,weight=2] ;
"2x3" -> "5" [dir=none,weight=2] ;
"2x3" -> "6" [dir=none,weight=2] ;

The sem package uses GraphViz to display path diagrams for

structural equation models and the gap package uses it to draw

pedigrees.

10.7

http://www.graphviz.org

Drawing networks

In gap the pedtodot() function writes a GraphViz input file from

a pedigree in GAS or LINKAGE format.

pid id fid mid sex aff GABRB1 D4S1645
1 10081 1 2 3 2 2 7/7 7/10
2 10081 2 0 0 1 1 -/- -/-
3 10081 3 0 0 2 2 7/9 3/10
4 10081 4 2 3 2 2 7/9 3/7
5 10081 5 2 3 2 1 7/7 7/10
6 10081 6 2 3 1 1 7/7 7/10
7 10081 7 2 3 2 1 7/7 7/10
8 10081 8 0 0 1 1 -/- -/-
9 10081 9 8 4 1 1 7/9 3/10
10 10081 10 0 0 2 1 -/- -/-
11 10081 11 2 10 2 1 7/7 7/7
12 10081 12 2 10 2 2 6/7 7/7
13 10081 13 0 0 1 1 -/- -/-
14 10081 14 13 11 1 1 7/8 7/8
15 10081 15 0 0 1 1 -/- -/-
16 10081 16 15 12 2 1 6/6 7/7

10.8

Drawing networks

First the code prints nodes for each individual, with sex and

affectedness information

for (s in 1:n) cat(paste("\"", id.j[s], "\" [shape=",
sep = ""), shape.j[s], ",height=", height, ",width=",
width, ",style=filled,color=", shade.j[s], "] ;\n")

giving output like

"16" [shape= circle ,height= 0.5 ,width= 0.75 ,style=filled,color= grey] ;

It then works out all the matings and creates small nodes for
each mating and lines connecting the parents to these nodes

mating <- paste("\"", s1, "x", s2, "\"", sep = "")
cat(mating, "[shape=diamond,style=filled,label=\"\",height=.1,width=.1] ;\n")
cat(paste("\"", s1, "\"", sep = ""), " -> ", mating,

paste(" [dir=", dir, ",weight=1]", sep = ""),
" ;\n")

cat(paste("\"", s2, "\"", sep = ""), " -> ", mating,
paste(" [dir=", dir, ",weight=1]", sep = ""),
" ;\n")

10.9

Drawing networks

giving output like

"2x3" [shape=diamond,style=filled,label="",height=.1,width=.1] ;
"2" -> "2x3" [dir=none,weight=1] ;
"3" -> "2x3" [dir=none,weight=1] ;

and then connects children to parents.

10.10

Drawing networks

pedigree 10081

1

23

4 5 6 78

9

10

11 1213

14

15

16

[Bioconductor also has GraphViz more integrated with R in the

RGraphViz package]

10.11

PMF: factor analysis

PMF is a program for constrained factor analysis in analytic
chemistry. It is controlled by an ugly text input file:

pmfini<-c(" ##PMF2 .ini file for: Simulations from R",
" ## Monitor code M: if M>1, PMF2 writes output every Mth step",
" ## For finding errors, use M<1 to output debug information",
" ## M PMF2 version number",
" 1 4.2",
" ## Dimensions: Rows, Columns, Factors. Number of \"Repeats\"",
" @nt@ @ns@ @sources@ 1",
" ## \"FPEAK\" (>0.0 for large values and zeroes on F side)",
" @FPEAK@",
" ## Mode(T:robust, F:non-robust) Outlier-distance (T=True F=False)",
" @isrobust@ @outlier@",
" ## Codes C1 C2 C3 for X_std-dev, Errormodel EM=[-10 ... -14]",
" 0.0100 0.0000 0.0100 -12",
" ## G Background fit: Components Pullup_strength",
" 0 0.0000",
" ## Pseudorandom numbers: Seed Initially skipped",
" @seed@ 0",
" ## Iteration control table for 3 levels of limit repulsion \"lims\"",

The @value@ are places where we want to substitute in a value.

10.12

PMF: factor analysis

R code for the substitutions looks like

temp<-gsub("@FPEAK@",formatC(fpeak,digits=4,format="f"),pmfini)

temp<-gsub("@isrobust@",isrobust,temp)

seed<-as.character(as.integer(seed))

temp<-gsub("@seed@", seed, temp)

10.13

PMF: factor analysis

We can write data files needed by PMF, and then write the

control file, then call PMF with the system() function. After

PMF finishes we read in the results.

write.table(cX,file=xfile, quote=FALSE, col.names=FALSE, row.names=FALSE)
write.table(cU,file=efile, quote=FALSE, col.names=FALSE, row.names=FALSE)
if (!debug)

on.exit(unlink(c(xfile,efile,inifile)))
writeLines(temp,inifile)

sysval<-system(paste(pmf,inifile), intern=TRUE,invisible=!debug)

ffactor<-read.table(outfiles$f,row.names=sourcenames,col.names=species)
gfactor<-read.table(outfiles$g,row.names=times,col.names=sourcenames)

From the user’s viewpoint it looks as though everything was done

in R.

10.14

SVG+tooltips

SVG (Scalable Vector Graphics) is a non-bitmap graphics format

for the web.

The RSvgDevice and RSVGTipsDevice packages allow R output

to SVG format.

We can use this to create graphs with links and tooltips. For

example, a funnelplot showing associations between a large

number of SNPs and VTE.

Point at a dot to see the SNP it represents, and click to go to

information about the gene.

10.15

SVG+tooltips

for(i in 1:length(or)) {
setSVGShapeToolTip(title=gene[i],

desc1=snp[i],
desc2=if(abs(lor[i]/se[i])>qnorm(0.5/n,lower.tail=FALSE))

qvals[i] else NULL
)

setSVGShapeURL(paste("http://pga.gs.washington.edu/data",
tolower(gene[i]),
sep="/")

)
points(prec[i],lor[i], cex=1, pch=19, col=’grey’)

}

10.16

Google Earth

Google Earth is controlled by KML files specifying locations.

KML is another plain text format.

We can write a KML file

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
<Placemark>
<name> 1 </name>

<Point> <coordinates>-118.0256,34.11619,400</coordinates>
</Point>

</Placemark>
</kml>

and then send it to Google Earth with the shell.exec(filename)

function, which opens a file using whatever is the appropriate

program.

10.17

Google Earth

The identify() function lets the user select a point on a
scatterplot.

●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●●

●

● ●

●

● ●

●

● ●

●
●

●
●

●

●

●
●●

● ●
●

●

● ●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ● ●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

0 100 200 300 400 500

20
40

60
80

Dist_nearestmajor

ai
r_

no
x_

co
rr

In this example the points are locations where air pollution was
measured, and we can call Google Earth to look at the location.

10.18

	Interfacing R
	Starting other software
	Examples
	Outline
	Drawing networks
	PMF: factor analysis
	SVG+tooltips
	Google Earth

