
7. Storing and retrieving large data

Thomas Lumley

Ken Rice

Universities of Washington and Auckland

Seattle, July 2012

Large data

“R is well known to be unable to handle large data sets.”

Solutions:

• Get a bigger computer: Linux computer with 16Gb memory

for < $2500

• Don’t load all the data at once (methods from the mainframe

days).

7.1

Storage formats

R has two convenient data formats for large data sets

• For ordinary large data sets, the RSQLite package provides

storage using the SQLite relational database.

• For very large ‘array-structured’ data sets such as whole-

genome SNP chips, the ncdf package provides storage using

the netCDF data format.

7.2

Large data

netCDF was designed by the NSF-funded UCAR

consortium, who also manage the National

Center for Atmospheric Research.

Atmospheric data are often array-oriented: eg temperature,

humidity, wind speed on a regular grid of (x, y, z, t).

Need to be able to select ‘rectangles’ of data – eg range of

(x, y, z) on a particular day t.

Because the data are on a regular grid, the software can work out

where to look on disk without reading the whole file: efficient

data access.

7.3

WGA

Array oriented data (position on genome, sample number) for

genotypes, probe intensities.

Potentially very large data sets:

2,000 people × 300,000 = tens of Gb

16,000 people × 1,000,000 SNPs = hundreds of Gb.

Even worse after imputation to 2,500,000 SNPs.

R can’t handle a matrix with more than 231−1 ≈ 2 billion entries

even if your computer has memory for it. Even data for one

chromosome may be too big.

7.4

Using netCDF data

With the ncdf package:

open.ncdf() opens a netCDF file and returns a connection to the

file (rather than loading the data)

get.var.ncdf() retrieves all or part of a variable.

close.ncdf() closes the connection to the file.

7.5

Dimensions

Variables can use one or more array dimensions of a file

!"#$

!%&'()$

*)+,-.')/$

012,&,/,&)$

7.6

Example

Finding long homozygous runs (possible deletions)

library("ncdf")

nc <- open.ncdf("hapmap.nc")

read all of chromosome variable

chromosome <- get.var.ncdf(nc,varid= "chr", start=1, count=-1)

set up list for results

runs<-vector("list", nsamples)

for(i in 1:nsamples}{

read all genotypes for one person

genotypes<-get.var.ncdf(nc,varid="geno",start=c(1,i),count=c(-1,1))

zero for htzygous, chrm number for hmzygous

hmzygous <- genotypes != 1

hmzygous <- as.vector(hmzygous*chromosome)

7.7

Example

consecutive runs of same value

r <- rle(hmzygous)

end <- cumsum(r$lengths)

begin <- cumsum(c(1, r$lengths))

long <- which (r$lengths > 250 & r$values !=0)

runs[[i]] <- cbind(begin[long], end[long], r$lengths[long])

}

close.ncdf(nc)

Notes

• chr uses only the ’SNP’ dimension, so start and count are
single numbers

• geno uses both SNP and sample dimensions, so start and
count have two entries.

• rle compresses runs of the same value to a single entry.

7.8

Creating netCDF files

Creating files is more complicated

• Define dimensions

• Define variables and specify which dimensions they use

• Create an empty file

• Write data to the file.

7.9

Dimensions

Specify the name of the dimension, the units, and the allowed

values in the dim.def.ncdf function.

One dimension can be ’unlimited’, allowing expansion of the file

in the future. An unlimited dimension is important, otherwise

the maximum variable size is 2Gb.

snpdim<-dim.def.ncdf(name="position",units="bases", vals=positions)

sampledim<-dim.def.ncdf(name="seqnum",units="count",

vals=1:10, unlim=TRUE)

7.10

Variables

Variables are defined by name, units, and dimensions

varChrm <- var.def.ncdf(name="chr",units="count",dim=snpdim,

missval=-1, prec="byte")

varSNP <- var.def.ncdf(name="SNP",units="rs",dim=snpdim,

missval=-1, prec="integer")

vargeno <- var.def.ncdf(name="geno",units="base",

dim=list(snpdim, sampledim), missval=-1, prec="byte")

vartheta <- var.def.ncdf(name="theta",units="deg",

dim=list(snpdim, sampledim), missval=-1, prec="double")

varr <- var.def.ncdf(name="r",units="copies",

dim=list(snpdim, sampledim), missval=-1, prec="double")

7.11

Creating the file

The file is created by specifying the file name ad a list of

variables.

genofile<-create.ncdf(filename="hapmap.nc",

vars=list(varChrm, varSNP, vargeno, vartheta, varr))

The file is empty when it is created. Data can be written using

put.var.ncdf(). Because the whole data set is too large to read,

we might read raw data and save to netCDF for one person at

a time.

for(i in 1:4000){

this.geno<-readRawData(i) ## somehow

put.var.ncdf(genofile, varid="geno", vals=this.geno,

start=c(1,i), count=c(-1,1))

}

7.12

Efficient use of netCDF

Read all SNPs, one sample

SNP 

Sample 

Genotypes 

Chromosome 

7.13

Efficient use of netCDF

Read all samples, one SNP

SNP 

Sample 

Genotypes 

Chromosome 

7.14

Efficient use of netCDF

Read some samples, some SNPs.

SNP 

Sample 

Genotypes 

Chromosome 

7.15

Efficient use of netCDF

Random access is not efficient: eg read probe intensities for all

missing genotype calls.

SNP 

Sample 

Genotypes 

Chromosome 

7.16

Efficient use of netCDF

• Association testing: read all data for one SNP at a time

• Computing linkage disequilibrium near a SNP: read all data

for a contiguous range of SNPs

• QC for aneuploidy: read all data for one individual at a time

(and parents or offspring if relevant)

• Population structure and relatedness: read all SNPs for two

individuals at a time.

7.17

	Large data
	Storage formats
	Large data
	WGA
	Using netCDF data
	Dimensions
	Example
	Creating netCDF files
	Dimensions
	Variables
	Creating the file
	Efficient use of netCDF

