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Regression commands

Two of the most important R commands;

• lm(): fits Linear Models

• glm(): fits Generalized Linear Models

(If you’ve used SAS, its glm is not the same as R’s)

‘Linear Regression’ and ‘Logistic Regression’ are special cases.

There’s a lot to learn here – entire graduate courses! – so the

help files are huge. How are lm(), glm() used in genetics?

4.1



Linear regression, with SNPs

Many analyses fit the ‘additive model’

y = β0 + β ×#minor alleles

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

β

β

0 1 2

4.2



Linear regression, with SNPs

An alternative is the ‘dominant model’;

y = β0 + β × (G 6= AA)
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Linear regression, with SNPs

or the ‘recessive model’;

y = β0 + β × (G == AA)
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Linear regression, with SNPs

Finally, the ‘two degrees of freedom model’;

y = β0 + βAa × (G == Aa) + βaa × (G == aa)
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Use of lm() in genetics

The lm() command fits all of these, in the same way. Formally,

lm(outcome ∼ genetic.predictor, [...] )

estimates the association between outcome and predictor

The optional arguments [...] might be

• data = my.data – your dataset

• subset = race=="CEPH" – use partial data

• weights = – for advanced analyses
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Use of lm() in genetics

How to make the genetic.predictor variable? Suppose you
had genotypes stored as character strings ("AA"/"Aa"/"aa") in
a vector g. You might use these commands;

Chosen Model Command to define variable
Additive genetic.predictor <- (g=="Aa") + 2*(g=="aa")

Dominant genetic.predictor <- (g=="Aa") | (g=="aa")

Recessive genetic.predictor <- g=="aa"

2 degs of freedom genetic.predictor <- factor(g)

When R meets FALSE or TRUE in a ‘math’ setting, it will coerce
them to be zero or one. So 1 + 2*TRUE is 3, TRUE + 2*FALSE is 1,
etc. Using factor() sets up several binary variables

• There are many other ways to do this!
Use table(g, genetic.predictor) to check your method
• Often, genotypes may be stored as 0/1/2. This is easier to

work with in R – but makes it harder to decide if A/C/G/T
is the minor allele, or risk allele.
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lm(): Estimates, Intervals, p-values

lm() produces point estimates for your model;

> genetic.predictor <- (g=="Aa") + 2*(g=="aa") #using additive model

> my.lm <- lm( cholesterol ~ genetic.predictor )

> my.lm

Call:

lm(formula = cholesterol ~ genetic.predictor)

Coefficients:

(Intercept) predictor

0.2104 0.9507

– also available via my.lm$coefficients or coef(my.lm).

The coefficients in the output tell you the additive increase
in outcome associated with a one-unit difference in the genetic

predictor.

The coefficient for predictor is in units of cholesterol per ’a’
allele
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lm(): Estimates, Intervals, p-values

You will also want confidence intervals;

> confint.default(my.lm)

2.5 % 97.5 %

(Intercept) 0.08391672 0.3368275

predictor 0.85279147 1.0486953

Remember to round these numbers to an appropriate number

of significant figures! (2 or 3 is usually enough)

We are seldom interested in the Intercept
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lm(): Estimates, Intervals, p-values

Two-sided p-values are also available;

> summary(my.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21037 0.06426 3.274 0.00119 **

predictor 0.95074 0.04977 19.101 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• In this data, we have strong evidence of an additive effect
of the minor allele on cholesterol

• summary(my.lm) gives many other details – ignore for now

• Confidence intervals are just Estimate ± 2×Std.Error
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Use of glm() in genetics

Logistic regression is the ‘default’ analysis for binary out-

comes

Outcome Type Regression Scale
Cholesterol

Blood Pressure Continuous Linear Difference in Outcome
BMI

Death
Stroke Binary Logistic Ratio of odds

BMI>30

What are odds? Really just probability...
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Use of glm() in genetics

Odds are a [gambling-friendly] measure of chance;
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Use of glm() in genetics

Using the data from slide 4.12 ;

> genpred2 <- factor(g) # the 2df model

> glm1 <- glm( dead10yrs ~ genpred2, family=binomial)

> coef(glm1)

pred2Aa pred2aa

0.6931 2.8904

• These are log odds ratio estimates; to transform to OR,
use e0.6931 = 2, e2.8904 = 18

• They are given relative to the baseline group – ‘AA’ in
this case

• Don’t forget the family=binomial argument!
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Use of glm() in genetics

Confidence intervals, p-values as with lm(), for the log odds

ratios;

> confint.default(glm1)

2.5 % 97.5 %

genpred2Aa 0.1201986 1.2660957

genpred2aa 2.1148912 3.6658523

> summary(glm1)

Estimate Std. Error z value Pr(>|z|)

genpred2Aa 0.6931 0.2923 2.371 0.01773 *

genpred2aa 2.8904 0.3957 7.305 2.77e-13 ***

Use exp() to get odds ratio estimates, intervals; p-values are

scale-independent
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The formula syntax

We saw lm(y∼ genetic.predictor) and glm(y∼ genpred2). To see
how phenotype depends on several covariates, we specify e.g.

y ∼ genotype.pred + age + sex

– formally, this gives multivariate regression; the genotype.pred

coefficients reflect the genotype effects adjusted for age and sex

• Separate covariates with ’+’. This is not addition!
• For now, make predictor variables first, then do regression.

It’s possible to do everything in one step, but use of e.g. ‘+’
will confuse R – unless you’re careful.
• For keen people; in the formula syntax, * indicates that

interactions should be fitted, I() insulates mathematical
operations, -1 removes the intercept... see ?formula

• For very keen people; vcovHC() in the sandwich package
provides ‘robust’ standard errors; coeftest() in the lmtest

package can use them to give ‘robust’ tests.

4.15



More extractor functions

We saw that the point estimates can be extracted using either;

• my.lm$coefficients or my.lm$coeff, i.e. the coefficients

attribute of the my.lm object
• coef(my.lm) or coefficients(my.lm)

Many statisticians are familiar with lm and glm objects, so prefer
the first version. But using ‘extractor functions’ makes the
code easier to read, more portable, and more robust to internal
changes. More are below; see also ?influence.measures

• predict(); predicted values at given covariates
• fitted.values(); fitted values for original data
• residuals(); residuals for original data
• confint.default(); see earlier slides
• vcov(); variance-covariance matrix for the point estimates
• vcovHC(); robust version – in the sandwich package
• AIC(), BIC(); An Information Criterion (and another one)
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