9. Bioconductor: annotation databases

Thomas Lumley
Ken Rice

UW Biostatistics

Seattle, June 2010
One goal of Bioconductor is to provide efficient access inside R to the genome databases that are vital to interpreting associations.

We will look at a few of these

- annotate

- biomaRt

- genomeGraphs

The reason to have an R interface to these databases is to be able to analyze annotation data for many SNPs or RNA transcripts.
Online or stored data

Annotation data can be downloaded in a single file or retrieved for each query from an online database.

Local storage is faster, but may require too much space (eg Ensembl) or become obsolete too quickly.

Local storage is ideal for fixed annotation data such as gene names for a microarray or SNP chip.
Types of database

Translations of names: Affy probe 32972_at is the gene **NADPH oxidase 1** with symbol **NOX1** and Ensembl gene id **ENSG00000007952**

Location: NOX1 is on Xq22.1, from 99984969 to 100015990, coded on the negative strand. There are 120 known polymorphisms (SNPs or indels) in this range.

Homology: The mouse version of NOX1 is also on the X chromosome, starting at 130621066.

Structure and function: **NOX1** is a membrane protein (location), involved in voltage-gated ion channel activity (molecular function), and involved in signal transduction (biological process).
Annotate

Bioconductor distributes annotation packages for a wide range of gene expression microarrays. The \texttt{annotate} package is one way to use this annotation information.

\begin{verbatim}
> library("annotate")
> library("hgu95av2.db")
> library("GO.db")
\end{verbatim}

loads the \texttt{annotate} package and the databases for the Gene Ontology and one of the Affymetrix human microarray chips.
Lookups

The databases are queried with `get()` or `mget()` for multiple queries

```r
> mget(c("738_at", "40840_at", "32972_at"), hgu95av2GENENAME)
$'738_at'
[1] "5’-nucleotidase, cytosolic II"

$'40840_at'
[1] "peptidylprolyl isomerase F (cyclophilin F)"

$'32972_at'
[1] "NADPH oxidase 1"

> go<-get("738_at", hgu95av2GO)
> names(go)
[1] "GO:0009117" "GO:0005829" "GO:0005737" "GO:0000166" "GO:0000287"
[6] "GO:0008253" "GO:0008253" "GO:0016787"
```
Lookups

> get("GO:0009117",GOTERM)
GOID: GO:0009117
Term: nucleotide metabolic process
Ontology: BP
Definition: The chemical reactions and pathways involving a nucleotide, a nucleoside that is esterified with (ortho)phosphate or an oligophosphate at any hydroxyl group on the glycose moiety; may be mono-, di- or triphosphate; this definition includes cyclic nucleotides (nucleoside cyclic phosphates).
Synonym: nucleotide metabolism
BioMart

BioMart (www.biomart.org) is a query-oriented data management system developed jointly by the European Bioinformatics Institute (EBI) and Cold Spring Harbor Laboratory (CSHL).

biomaRt is an R interface to BioMart systems, in particular to Ensembl (www.ensembl.org). Ensembl is a joint project between EMBL - European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system which produces and maintains automatic annotation on selected eukaryotic genomes.
We begin by choosing which BioMart to use

```r
> library(biomaRt)
Loading required package: RCurl
> listMarts()

     name                   version
   1    ensembl ENSEMBL 44 GENES (SANGER)
   2 compara_mart_homology_44 ENSEMBL 44 HOMOLOGY (SANGER)
   3 compara_mart_pairwise_ga_44 ENSEMBL 44 PAIRWISE ALIGNMENTS (SANGER)
   4        snp ENSEMBL 44 VARIATION (SANGER)
   5        vega             VEGA 21 (SANGER)
   6    uniprot               UNIPROT PROTOTYPE (EBI)
   7        msd              MSD PROTOTYPE (EBI)
   8 ENSEMBL_MART_GRAMENE               GRAMENE (CSHL)
   9       dicty               DICTYBASE (NORTHWESTERN)
  10       rgd_mart            RGD GENES (MCW)
  11       SSLP_mart RGD MICROSATELLITE MARKERS (MCW)
  12 pepseekerGOLD_mart  PEPSEEKER (UNIVERSITY OF MANCHESTER)
  13        pride                PRIDE (EBI)

> ens <- useMart("ensembl")
```
We then choose a database to use

```r
> listDatasets(ens)

<table>
<thead>
<tr>
<th>dataset</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oanatinus_gene_ensembl</td>
<td>Ornithorhynchus anatinus genes (OANA5)</td>
</tr>
<tr>
<td>gaculeatus_gene_ensembl</td>
<td>Gasterosteus aculeatus genes (BROADS1)</td>
</tr>
<tr>
<td>cporcellus_gene_ensembl</td>
<td>Cavia porcellus genes (GUINEAPIG)</td>
</tr>
<tr>
<td>lafricana_gene_ensembl</td>
<td>Loxodonta africana genes (BROADE1)</td>
</tr>
<tr>
<td>hsapiens_gene_ensembl</td>
<td>Homo sapiens genes (NCBI36)</td>
</tr>
<tr>
<td>cfamiliaris_gene_ensembl</td>
<td>Canis familiaris genes (BROADD2)</td>
</tr>
</tbody>
</table>

> ens <- useDataset("hsapiens_gene_ensembl",mart=ens)
```
BioMart

The `getGene` function queries the database for gene information. It accepts many forms of gene identifier, eg Entrez, HUGO, Affy transcript

```r
> getGene(id=1440, type="entrezgene", mart=ens)
  entrezgene hgnc_symbol
1    1440   CSF3

1 Granulocyte colony-stimulating factor Precursor (G-CSF)(Pluripoietin) (Filgrastim)(Lenograstim) [Source:UniProtKB/Swiss-Prot;Acc:P09919]
  chromosome_name band strand start_position end_position ensembl_gene_id
1       17  q21.1    1  35425140  35427592 ENSG00000108342

> getGene(id=c("AGT","AGTR1"), type="hgnc_symbol", mart=ens)
  hgnc_symbol hgnc_symbol
1       AGTR1    AGTR1
2        AGT     AGT

1

2 Angiotensinogen Precursor (Serpin A8) [Contains Angiotensin-1(Angiotensin I) (Ang I);Angiotensin-2(Angiotensin II)(Ang II);Angiotensin-3(Angiotensin III) (Ang III)(Des-Asp[1]-angiotensin II)] [Source:UniProtKB/Swiss-Prot;Acc:P01019]
  chromosome_name band strand start_position end_position ensembl_gene_id
1       3    q24    1  149898348  149943478 ENSG00000144891
2       1    q42.2  -1  228904897  228916564 ENSG00000135744
```

9.10
getBM is more general than getGene. It specifies a list of filters for selecting genes or SNPs and attributes to return from the database.

```r
> affyids <- c("202763_at", "209310_s_at", "207500_at")
> getBM(attributes = c("affy_hg_u133_plus_2", "hgnc_symbol", "chromosome_name", "start_position", "end_position", "band"), filters = "affy_hg_u133_plus_2", values = affyids, mart = ens)

<table>
<thead>
<tr>
<th>affy_hg_u133</th>
<th>hgnc</th>
<th>chromosome_name</th>
<th>start_position</th>
<th>end_position</th>
<th>band</th>
</tr>
</thead>
<tbody>
<tr>
<td>202763_at</td>
<td>CASP3</td>
<td>4</td>
<td>185785844</td>
<td>185807623</td>
<td>q35.1</td>
</tr>
<tr>
<td>207500_at</td>
<td>CASP5</td>
<td>11</td>
<td>104370180</td>
<td>104384957</td>
<td>q22.3</td>
</tr>
<tr>
<td>209310_s_at</td>
<td>CASP4</td>
<td>11</td>
<td>104318804</td>
<td>104344535</td>
<td>q22.3</td>
</tr>
</tbody>
</table>
```
Homology

getLDS() combines two data marts, for example to homologous genes in other species. We can look up the mouse equivalents of a particular Affy transcript, or of the NOX1 gene.

```r
> human = useMart("ensembl", dataset = "hsapiens_gene_ensembl")
> mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl")
> getLDS(attributes = c("hgnc_symbol","chromosome_name", "start_position"),
         filters = "hgnc_symbol", values = "NOX1", mart = human,
         attributesL = c("chromosome_name","start_position"),
         martL = mouse)
   V1  V2  V3  V4  V5
1 NOX1 X 99984969 X 130621066
```
Homology

The `getSequence` function looks up DNA or protein sequences by chromosome position or gene identifiers.

```r
> agt<-getSequence(id="AGT",type="hgnc_symbol", seqType="peptide",mart=ens)
> agt

1  MRKRAPQSEMAPAGVSLRATILCLLAWAGLAAGDRVYIHFPHLVIHNESTCEQLAKANAGPKPDPTFIPAPIQAKTS
PVDEKALQDQLVLAAKLDTEDKLRAMVGMLANFLGFRIYGMHSELWGVVHGATVLSPTAVFGTLASLYLGAExtern
RLQAILGVPWKDNCTSRLDAHKVLSALQAVQGLLLVAQGRADSQAQLLLSTVGVFATAPGLHLKQPFVQGLALYTPVVL
PRSLDFTELVDVAEEKIDRFMQAVTGKTGCSLMGASVDSTLAFNTYVHFQGKMKGSLLAEPQEFWVDNSTSVSVPMLS
GGMTFQHWSDIQDNSVTQVGPFTESACLLLIQPHYASDLKVEGLTFQQNSLNWMKKSIPRTIHLTMPQVLQGSYDLQ
DLLAQAEILPAIHLTELNLQKLSNDRIRVGEVLNSIFEFLEADEREPTESTQQLNKPEVLEVTNLNPFLFAVYDQSATL
HFLGRVANPLSTA*
```
Example: finding chromosomes

We had a set 1524 SNPs, of which 409 did not have their chromosome listed.

I needed to know which SNPs were on the X chromosome, to estimate sex from DNA intensity and heterozygous X-chromosome loci, for QC.

> head(unknown)
[1] "UGT1A3-001449-0_B_R_1538822" "LIPC-002761-0_B_R_1538453"
[3] "CETP-001265-0_B_R_1538254" "F8-165293-0_T_F_1538626"
[5] "CPB2-051208-0_B_F_1539402" "VDRDIL-1355-0_T_F_1539404"

A hand-search would be easy but tedious, so we want an automated approach.
Example: finding chromosomes

First extract the gene names

genes <- sapply(unknown, function(snp) strsplit(snp,"-"))[1]
ugenes <- unique(genes)

Now call out to Ensembl

getBM(attributes="chromosome_name", filters="hgnc_symbol",values=ugenes,
mart=ensembl)

works for all except VRDIL, which isn't recognized.
Finding SNPs

Human SNPs are in a separate database from gene information. We can look up known SNPs and other polymorphisms for the NOX1 gene.

```r
> snpmart = useMart("snp", dataset = "hsapiens_snp")
Checking attributes ... ok
Checking filters ... ok
> getBM(c("refsnp_id", "allele", "chrom_start", "chrom_strand"),
   filters = c("chr_name", "chrom_start","chrom_end"),
   values = list("X",99984969,100015990), mart = snpmart)

   refsnp_id      allele chrom_start chrom_strand
      1   rs35477500      AAG/-   99985012          1
      2   rs41310727       G/T   99985014          1
      3   rs61639376     GAA/-   99985014          1
      4   rs34181451        G/A   99985489          1
      5   rs34009592        G/A   99985531          1
```

9.16
GenomeGraphs

This package makes pretty pictures from the annotation data.

For example, a pictures showing the standard and alternative splices for the NOX1 gene and the location of the gene on the X chromosome

```r
> library(GenomeGraphs)
> gene <- makeGene(id = "NOX1", type = "hgnc_symbol",
                   biomart = ensembl)
> transcript <- makeTranscript(id="NOX1", type="hgnc_symbol",
                               biomart=ensembl)
> ideogram <- makeIdeogram(chromosome ="X")
> gdPlot(list(ideogram, gene, transcript))
```
GenomeGraphs