Writing loops in R

We saw that `apply()`, `sapply()` are R's preferred way of looping (doing the same thing many times)

Even for expert users, their use requires some careful thought; debugging code may be complex.

In this session we’ll talk about some alternatives, and their application to genome-wide studies.
for loops

Your first computer program?

```r
for(i in 1:100){
    print("Hello world!")
    print(i*i)
}
```

- Everything inside the curly brackets `{}...` is done 100 times

- Looped commands can depend on `i` (or whatever you called the counter)

- R creates a vector `i` with 1:100 in it. You could use any vector that’s convenient
for loops

for() loops are very intuitive, but have some drawbacks;

- They can be slow;
 - ‘growing’ the dataset is a bad idea;
 mydata <- cbind(mydata, rnorm(1000, mean=i))
 - set up blank output first, then ‘fill it in’

- apply() is interpreted slightly faster than for() – but typically this will not matter, contrary to some urban myths

- for() loops require more typing than apply()! For tasks which will be repeated, writing a function really is the Right Thing to do, in the long run.

Using for(i in 1:N) sets up a vector (i) of length N. Do you really need this?
for loops

Two alternatives; (see ?Control for details)

```r
i <- 1; my.mat <- matrix(NA, N, 3)
while(i <= N){
  z <- work.on.gene(i)
  my.mat[i,] <- summary(z)
  i <- i+1
}

– note that we avoided ‘growing’ the output

```r
i <- 1; my.mat <- matrix(NA, N, 3)
repeat{
 z <- work.on.gene(i)
 my.mat[i,] <- summary(z)
 i <- i+1
 if(i>=N) break()
}

```r

Use apply(), sapply() to avoid the ‘setup’ stage
Application to whole-genome study

Whole genome studies look very intimidating ...

Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis

John D Rioux1,2, Rannik J Xavier2, Kent D Taylor3, Mark S Silverberg2, Philippe Goyette1, Alan Huet3, Todd Green2, Petric Kuballa1, M Michael Barmada4, Lisa Wu Datta7, Yin Yao Shugart5, Anne M Griffiths9, Stephan R Targan4, Andrew F Ippoliti4, Edmond-Jean Bernard10, Ling Mei1, Dan I Nicolau11, Miguel Requeiro12, L Philip Schiumi13, A Hillary Steinbart4, Jerome I Rotter4, Richard H Duerr4,12, Judy H Cho14,16, Mark J Daly2,15,16 & Steven R Brant7,8,16

6.5
Application to whole-genome study

... however, each $p$-value on that picture comes from a single logistic regression.

There may be 304,413 tests in total; if each one takes $1/10$ sec, the analysis is done in under an hour;

<table>
<thead>
<tr>
<th>Time per test</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 sec</td>
<td>51 mins</td>
</tr>
<tr>
<td>0.1 sec</td>
<td>8 hours 27 mins</td>
</tr>
<tr>
<td>1 sec</td>
<td>3 days 12.5 hrs</td>
</tr>
<tr>
<td>5 sec</td>
<td>17 days 15 hrs (!)</td>
</tr>
<tr>
<td>5 mins</td>
<td>3 yrs 11 months (!!!)</td>
</tr>
</tbody>
</table>

Cutting time per test from 1 sec $\rightarrow$ 0.1 sec is clearly worthwhile

Proposing analyses where each test takes $>5$ secs is silly.
Some easy ‘streamlining’ ideas;

- Write a function to do **just the analysis you want**
  
  ```r
 > my.output <- apply(my.data, 1, my.function)
  ```

- Pre-process/‘clean’ your data before analysis; e.g. `sum(x)/length(x)` doesn’t error-check like `mean(x)`

- Similarly, you can streamline `glm` to just `glm.fit` [see examples]

- Use vectorized operations, where possible

- Store data as matrices, not data.frames
Making code run faster, part 2

Streamlining, for ‘experts-only’

• Write **small but important** pieces of code in C, and call these from R

• **Batch mode** processing lets you break down e.g. the whole genome into 23 chromosomes – great if you have 23 processors to use.

  – Save your analysis in 23 output files
  
  – read in the answers
  
  – **finally** produce e.g. multi-color pictures
Timing

“Premature optimization is the root of all evil”

Donald Knuth

Do you need to optimize your code? Running 2 or 3 times faster may not be worth the time spent coding/debugging!

But going an order of magnitude faster is A Good Thing.

After you have code that works, you may need to speed it up. Experienced users may be able to ‘eyeball’ the problem; measurement is an easier and more reliable approach.
Timing

- `proc.time()` returns the current time. Save it before a task and subtract from the value after a task.

- `system.time()` times the evaluation of expression.

- R has a **profiler**; this records which functions are being run, many times per second. `Rprof(filename)` turns on the profiler, `Rprof(NULL)` turns it off. `summaryRprof(filename)` reports how much time was spent in each function.

Remember that a 1000-fold speedup in a function used 10% of the time is **less helpful** than a 30% speedup in a function used 50% of the time.
High-throughput code – caveats

We saw yesterday that ‘weird’ datasets can crash your code. These will appear in genome-wide studies, and a crash at SNP 299,999 will be very frustrating.

- Some ‘weirdness’ is easy to spot;
  - Everyone is homozygous
  - All cases missing
  - No variation in outcome ...

- In more complex models, it’s easier to ‘try it and see’. Use tryCatch()

- When ‘weirdness’ is found, high-throughput code should;
  - Produce sensible output (NA, -999 etc)
  - Handle these appropriately in summary output