

4. Model fitting

Thomas Lumley Ken Rice

UW Biostatistics

Seattle, June 2010

Two of the most important R commands;

- lm(): fits Linear Models
- glm(): fits Generalized Linear Models

(If you've used SAS, its glm is **not** the same as R's)

'Linear Regression' and 'Logistic Regression' are special cases.

There's a lot to learn here – entire graduate courses! – so the help files are huge. How are lm(), glm() used in genetics?

Many analyses fit the 'additive model'

 $y = \beta_0 + \beta \times \#$ minor alleles

An alternative is the 'dominant model';

 $y = \beta_0 + \beta \times (G \neq AA)$

or the 'recessive model';

 $y = \beta_0 + \beta \times (G = = AA)$

Finally, the 'two degrees of freedom model';

The lm() command fits all of these, in the same way. Formally,

```
lm(outcome \sim genetic.predictor, [...] )
```

estimates the association between outcome and predictor

The **optional** arguments [...] might be

- data = my.data your dataset
- subset = race=="CEPH" use partial data
- weights = for advanced analyses

Use of lm() in genetics

How to make the genetic.predictor variable? Note that when R meets FALSE or TRUE in a 'math' setting, it will **coerce** them to be zero or one. So 1 + 2*TRUE is 3, TRUE + 2*FALSE is 1, etc

Suppose you had genotypes stored in vector g, as character strings "AA"/"Aa"/"aa". You might use these commands;

Chosen Model	genetic.predictor <-
Additive	(g=="Aa") + 2*(g=="aa")
Dominant	(g=="Aa") (g=="aa")
Recessive	g=="aa"
2 degrees of freedom	factor(g)

- There are many other ways to do this! Use table(g, genetic.predictor) to check what you did
- Often, genotypes may be stored as 0/1/2. This is easier to work with in R but makes it harder to decide if A/C/G/T is the risk allele

lm(): Estimates, Intervals, p-values

lm() produces point estimates for your model;

- also available via my.lm\$coefficients Or coef(my.lm).

The coefficients in the output tell you the **additive increase** in outcome associated with a **one-unit** difference in the genetic predictor.

The coefficient for predictor is in units of cholesterol per 'a' allele

lm(): Estimates, Intervals, p-values

You will also want **confidence intervals**;

Remember to **round these numbers** to an appropriate number of significant figures! (2 or 3 is usually enough)

We are **seldom** interested in the Intercept

lm(): Estimates, Intervals, p-values

Two-sided **p-values** are also available;

In this data, we have **strong evidence** of an **additive effect** of the minor allele on cholesterol

summary(my.lm) gives many other details - ignore for now

Confidence intervals are just Estimate \pm 2×Std.Error

Use of glm() in genetics

Logistic regression is the 'default' analysis for binary outcomes

Outcome	Туре	Regression	Scale
Cholesterol			
Blood Pressure	Continuous	Linear	Difference in Outcome
BMI			
Death Stroke BMI>30	Binary	Logistic	Ratio of odds

What are **odds**? Really just **probability**...

Odds are a [gambling-friendly] measure of chance;

Odds are a [gambling-friendly] measure of chance;

Odds are a [gambling-friendly] measure of chance;

- so what are odds ratios?

Using the data from the bar charts;

```
> genpred2 <- factor(g) # the 2df model</pre>
```

```
> glm1 <- glm( dead10yrs ~ genpred2, family=binomial)</pre>
```

```
> coef(glm1)
```

pred2Aa pred2aa 0.6931 2.8904

These are log odds ratio estimates; to transform to OR, use $e^{0.6931} = 2, e^{2.8904} = 18$

They are given **relative to the baseline group** – 'AA' in this case

Don't forget the family=binomial argument!

Use of glm() in genetics

Confidence intervals, p-values as with lm(), for the log odds ratios;

Use exp() to get odds ratio estimates, intervals; p-values are scale-independent

The formula syntax

We fit $lm(y \sim genetic.predictor)$ and $glm(y \sim genpred2)$. To see how phenotype depends on *several* covariates, we specify e.g.

```
y \sim genotype.pred + age + sex
```

- formally, this gives *multivariate regression*; the genotype.pred coefficients reflect the genotype effects *adjusted for age and sex*

- Separate covariates with '+'. This is *not* addition!
- For now, make predictor variables first, then do regression. It's possible to do everything in one step, but use of e.g. '+' will confuse R – unless you're careful.
- For keen people; in the formula syntax, * indicates that interactions should be fitted, I() insulates mathematical operations, -1 removes the intercept... see ?formula
- For very keen people; vcovHC() in the sandwich package provides 'robust' standard errors; coeftest() in the lmtest package uses them to give 'robust' tests.