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Regression commands

Two of the most important R commands;

• lm(): fits Linear Models

• glm(): fits Generalized Linear Models

(If you’ve used SAS, its glm is not the same as R’s)

‘Linear Regression’ and ‘Logistic Regression’ are special cases.

There’s a lot to learn here – entire graduate courses! – so the

help files are huge. How are lm(), glm() used in genetics?
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Linear regression, with SNPs

Many analyses fit the ‘additive model’

y = β0 + β ×#minor alleles
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Linear regression, with SNPs

An alternative is the ‘dominant model’;

y = β0 + β × (G 6= AA)
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Linear regression, with SNPs

or the ‘recessive model’;

y = β0 + β × (G == AA)
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Linear regression, with SNPs

Finally, the ‘two degrees of freedom model’;

y = β0 + βAa × (G == Aa) + βaa × (G == aa)
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Use of lm() in genetics

The lm() command fits all of these, in the same way. Formally,

lm(outcome ∼ genetic.predictor, [...] )

estimates the association between outcome and predictor

The optional arguments [...] might be

• data = my.data – your dataset

• subset = race=="CEPH" – use partial data

• weights = – for advanced analyses
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Use of lm() in genetics

How to make the genetic.predictor variable? Note that when R

meets FALSE or TRUE in a ‘math’ setting, it will coerce them to
be zero or one. So 1 + 2*TRUE is 3, TRUE + 2*FALSE is 1, etc

Suppose you had genotypes stored in vector g, as character
strings "AA"/"Aa"/"aa". You might use these commands;

Chosen Model genetic.predictor <- xxxxxxxxxxxx
Additive (g=="Aa") + 2*(g=="aa")

Dominant (g=="Aa") | (g=="aa")

Recessive g=="aa"

2 degrees of freedom factor(g)

• There are many other ways to do this!
Use table(g, genetic.predictor) to check what you did

• Often, genotypes may be stored as 0/1/2. This is easier to
work with in R – but makes it harder to decide if A/C/G/T
is the risk allele
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lm(): Estimates, Intervals, p-values

lm() produces point estimates for your model;

> genetic.predictor <- (g=="Aa") + 2*(g=="aa") #using additive model

> my.lm <- lm( cholesterol ~ genetic.predictor )

> my.lm

Call:

lm(formula = cholesterol ~ genetic.predictor)

Coefficients:

(Intercept) predictor

0.2104 0.9507

– also available via my.lm$coefficients or coef(my.lm).

The coefficients in the output tell you the additive increase
in outcome associated with a one-unit difference in the genetic

predictor.

The coefficient for predictor is in units of cholesterol per ’a’
allele

4.8



lm(): Estimates, Intervals, p-values

You will also want confidence intervals;

> confint.default(my.lm)

2.5 % 97.5 %

(Intercept) 0.08391672 0.3368275

predictor 0.85279147 1.0486953

Remember to round these numbers to an appropriate number

of significant figures! (2 or 3 is usually enough)

We are seldom interested in the Intercept
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lm(): Estimates, Intervals, p-values

Two-sided p-values are also available;

> summary(my.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21037 0.06426 3.274 0.00119 **

predictor 0.95074 0.04977 19.101 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this data, we have strong evidence of an additive effect of

the minor allele on cholesterol

summary(my.lm) gives many other details – ignore for now

Confidence intervals are just Estimate ± 2×Std.Error
4.10



Use of glm() in genetics

Logistic regression is the ‘default’ analysis for binary out-

comes

Outcome Type Regression Scale
Cholesterol

Blood Pressure Continuous Linear Difference in Outcome
BMI

Death
Stroke Binary Logistic Ratio of odds

BMI>30

What are odds? Really just probability...
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Use of glm() in genetics

Odds are a [gambling-friendly] measure of chance;
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Use of glm() in genetics
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Use of glm() in genetics
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Use of glm() in genetics

Using the data from the bar charts;

> genpred2 <- factor(g) # the 2df model

> glm1 <- glm( dead10yrs ~ genpred2, family=binomial)

> coef(glm1)

pred2Aa pred2aa

0.6931 2.8904

These are log odds ratio estimates; to transform to OR, use

e0.6931 = 2, e2.8904 = 18

They are given relative to the baseline group – ‘AA’ in this

case

Don’t forget the family=binomial argument!
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Use of glm() in genetics

Confidence intervals, p-values as with lm(), for the log odds

ratios;

> confint.default(glm1)

2.5 % 97.5 %

genpred2Aa 0.1201986 1.2660957

genpred2aa 2.1148912 3.6658523

> summary(glm1)

Estimate Std. Error z value Pr(>|z|)

genpred2Aa 0.6931 0.2923 2.371 0.01773 *

genpred2aa 2.8904 0.3957 7.305 2.77e-13 ***

Use exp() to get odds ratio estimates, intervals; p-values are

scale-independent
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The formula syntax

We fit lm(y∼ genetic.predictor) and glm(y∼ genpred2). To see
how phenotype depends on several covariates, we specify e.g.

y ∼ genotype.pred + age + sex

– formally, this gives multivariate regression; the genotype.pred

coefficients reflect the genotype effects adjusted for age and sex

• Separate covariates with ’+’. This is not addition!
• For now, make predictor variables first, then do regression.

It’s possible to do everything in one step, but use of e.g. ‘+’
will confuse R – unless you’re careful.

• For keen people; in the formula syntax, * indicates that
interactions should be fitted, I() insulates mathematical
operations, -1 removes the intercept... see ?formula

• For very keen people; vcovHC() in the sandwich package
provides ‘robust’ standard errors; coeftest() in the lmtest

package uses them to give ‘robust’ tests.
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