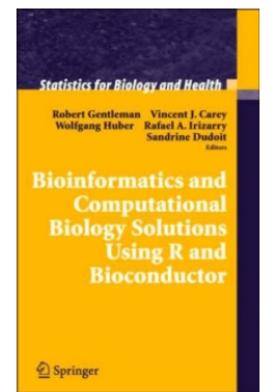


Bioconductor intro

Thomas Lumley Ken Rice

UW Biostatistics

Seattle, June 2009


What is **Bioconductor**?

What is Bioconductor?

- www.bioconductor.org
- Software project for analysis of genomic data and related tools, resources/datasets
- Open source and Open development
- Free

You could use commercial software; but experts typically write R code first. The help manuals are not a sales pitch and encourage appropriate use

- Begun in 2001, based at Harvard and now FHCRC (Seattle)
- A large collection of R packages (they also convert good software to R)
- Far too much for our little course!

We'll give examples of what Bioconductor can do, and how to learn more. Gentleman et al (above) is a helpful reference text

Getting started...

home getting started	overview	downloads	documentation	publications	workshops	cabi			
<u>Getting Started</u>									
<u>Overview</u>	Installation Instructions								
<u>Downloads</u>	mocacia	in motio	cerons						
<u>Documentation</u>									
<u>Workflows</u>	Install R								
Installation	1. Download the m	lost recent versi	on of 🔇 R from 🔇 Th	e Comprehensive	R Archive Network	¢.			
<u>FAQ</u>	(CRAN). The 🔇	R FAQ and the (R Installation and i	Administration Man	ual contain detaile	ed			
<u>Package Slides</u>	instructions for i	nstalling R on va	arious platforms (Lin	ux, OS X, and Wind	ows being the ma	in			
Annual Reports	ones).								
<u>Monograph</u>	2. Ctart the Discourse	ana an Méndau	is and OOV this will a	ususllumsen daub	le clicking on the (_			
Publications	Start the R program; on Windows and OS X, this will usually mean double-clicking on the R application, on UNIX-like systems, type "R" at a shell prompt.								
<u>Workshops</u>	application, on c	JINIA-IIKE System	is, type in at a shell	prompt.					
<u>Developers</u>	3. As a first step wi	ith R, start the R	help browser by typir	ng "help.start()" in ti	ne R command wi	indow.			
News			e "mean" function, typ						

Install standard Bioconductor packages

Install BioConductor packages using the biocLite.R installation script. In an R command window, type the following:

source("http://bioconductor.org/biocLite.R")
biocLite()

> source("http://bioconductor.org/biocLite.R")

> biocLite()

installs the following libraries;

affy, affydata, affyPLM, annaffy, annotate, Biobase, Biostrings, DynDoc, gcrma, genefilter, geneplotter, hgu95av2.db, limma, marray, matchprobes, multtest, ROC, vsn, xtable, affyQCReport

... then you use e.g. library(ROC) as before.

vignette(package="ROC") tells you to look at vignette("ROCnotes")
for a worked example - a very helpful introduction. (Or use
e.g. openVignette("ROC") from the Biobase package)

To get other packages, use e.g. biocLite("SNPchip")

Do not need to type biocLite() after you install (even in a new R session).

This would install everything again – which is harmless, but slow.

What to install?

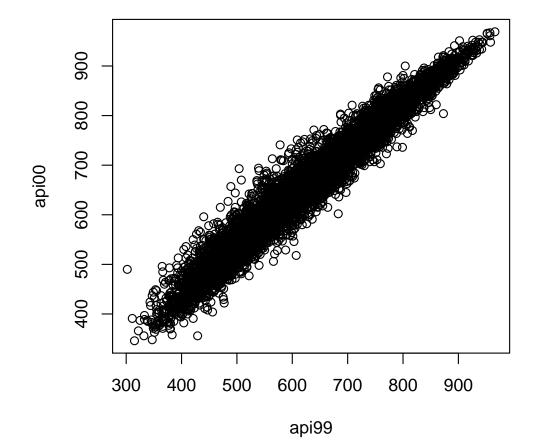
Back to the front page - click 'Downloads'

BIOCONDUCTOR Bioconductor is an open source and open development software project for the analysis and comprehension of genomic data.										
home getting started	overview downloads documentation publications workshops cabig									
<u>Getting Started</u>										
<u>Overview</u>	BioC 2.4 (release)									
<u>Downloads</u>										
<u>BioC 2.4 (release)</u>	BioC 2.4 was released 21 April, 2008. This release is designed for R 2.9.z.									
<u>BioC 2.5 (devel)</u>										
<u>Past BioC</u> <u>Releases</u>	BioC 2.4 packages:									
<u>Mirrors</u>	Software									
<u>Documentation</u>	- Metadata (Appetation, CDE and Broke)									
Publications	 Metadata (Annotation, CDF and Probe). 									
<u>Workshops</u>	Experiment Data									
<u>Developers</u>	Complete Taxonomy									
<u>News</u>										
	Installation Instructions									
	Multiple platform build/check report									

@ 2003-2008 BioConductor. All Rights Reserved.

What to install?

- **Software** probably what you want
- Annotation data e.g. probe sequence data for microarrays of different types
- Experiment data e.g. datasets from hapmap.org, some expression datasets
- **Complete Taxonomy** just everything!

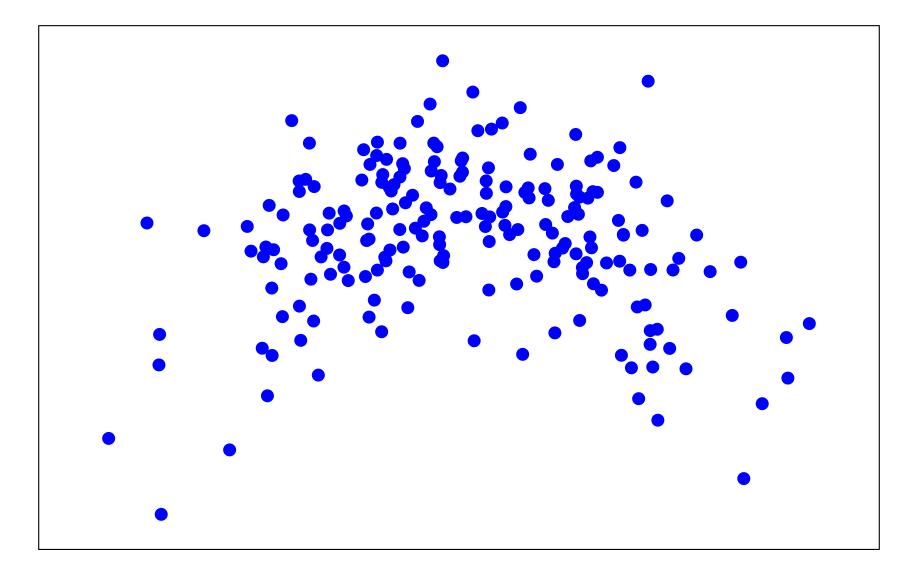

Software example – hexbin

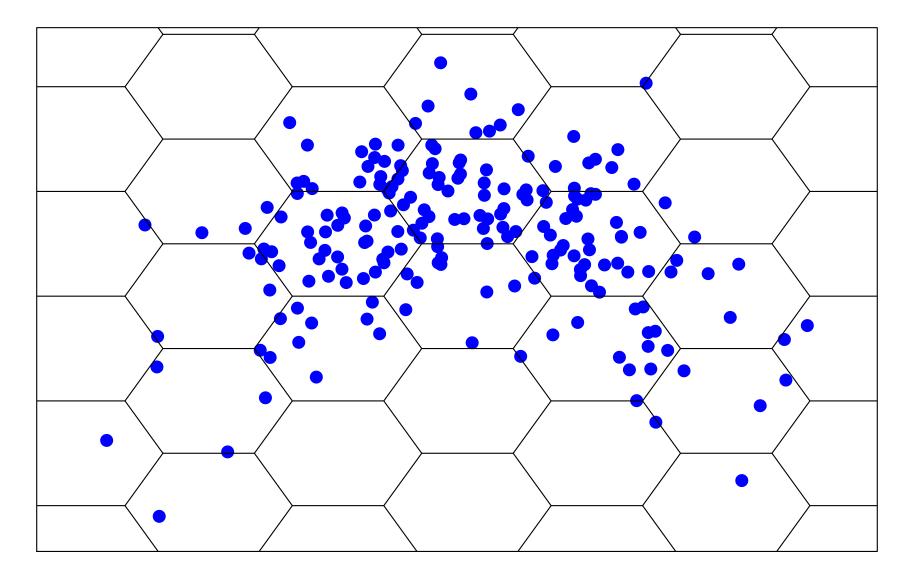
Genetics/Genomics tends to produce **massive** datasets. On any (standard) plot of e.g. 10,000 points, **many** will overlap

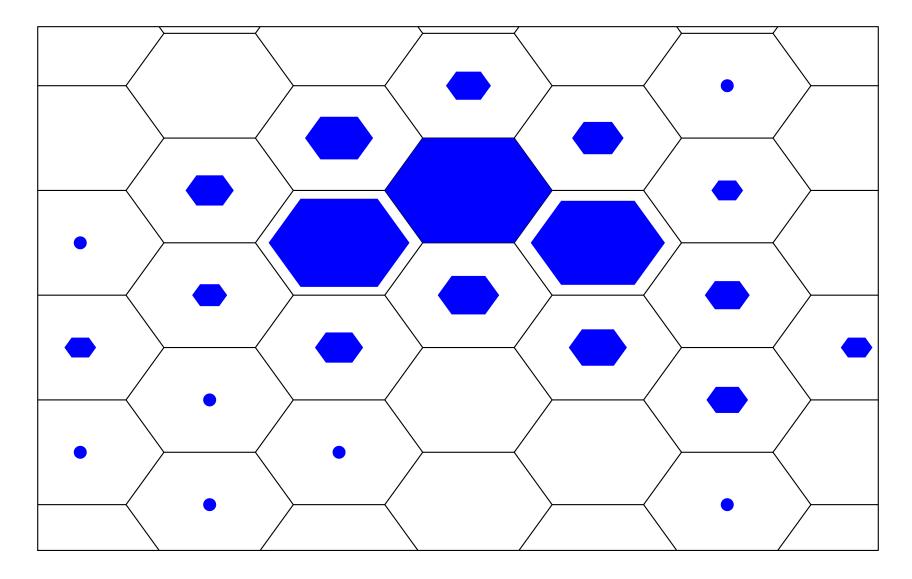
Recall the California schools example – the California Academic Performance Index reported from 6194 schools; download the (standard) package

- > install.packages("survey")
- > library(survey)
- > data(api)
- > plot(api00~api99,data=apipop) # plain plot

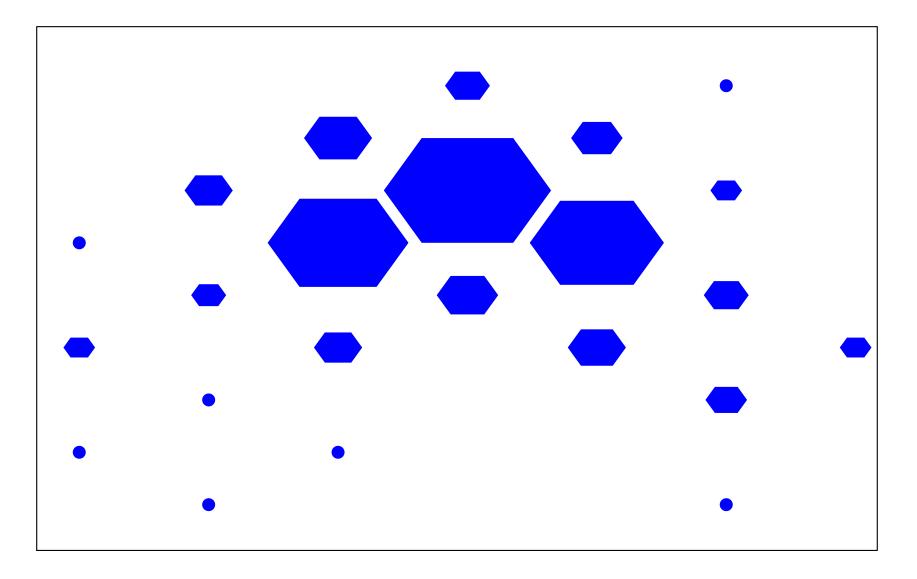
Software example – hexbin

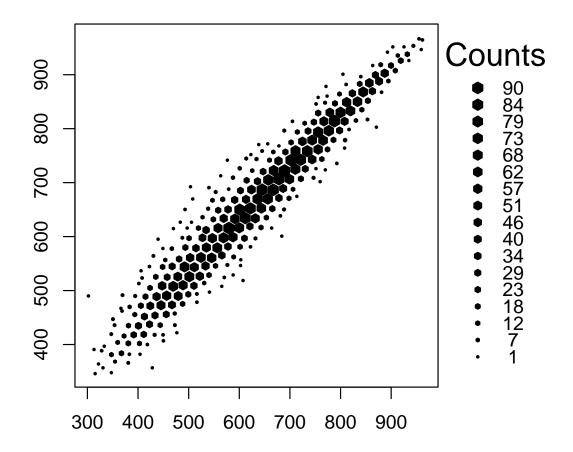

Hexbin – a better way


We don't *really* care about the exact location of every single point.


- How **many** points in one 'vicinity' compared to others?
- Any 'outliers' far from all other data points?

In one dimension, histograms answer these questions by **binning** the data


Hexbin – a better way


Hexbin – a better way

Back to schools

Now with hexbin; recall we download from Bioconductor, not CRAN

- > biocLite("hexbin")
- > library(hexbin)
- > with(apipop, plot(hexbin(api99,api00), style="centroids"))

Genome-Wide Association Studies (GWAS) are currently popular – typically, these genotype e.g. 1M SNPs on several thousand subjects in (large) established studies

- Usually on 1000's of subjects
- 'Simple' *t*-tests, regressions, for each SNP (like microarrays)
- 1M anything takes a long time! (up to 72 hours)
- Just loading big datasets is non-trivial but some tools are available

snpMatrix is a Bioconductor package for GWAS analysis maintained by David Clayton (analysis lead on Wellcome Trust)

```
biocLite("snpMatrix")
library(snpMatrix)
data(for.exercise)
```

A 'little' case-control dataset (Chr 10) based on HapMap – three objects; snp.support, subject.support and snps.10

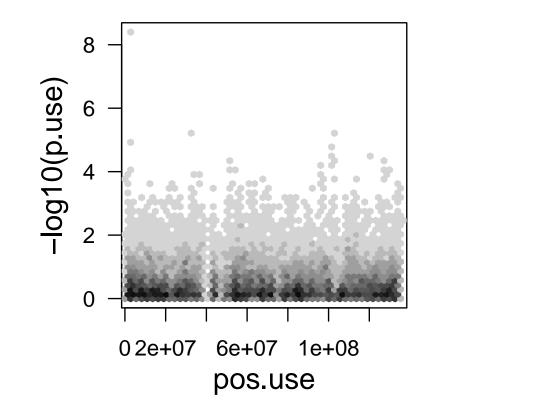
```
> summary(snp.support)
  chromosome position
                               A1
                                        A2
Min. :10 Min. :
                              A:14019 C: 2349
                      101955
 1st Qu.:10 1st Qu.: 28981867
                               C:12166 G:12254
Median :10
            Median : 67409719
                               G: 2316
                                        T:13898
Mean :10 Mean : 66874497
3rd Qu.:10 3rd Qu.:101966491
Max. :10
            Max. :135323432
> summary(subject.support)
                stratum
      СС
Min.
       :0.0
            CEU
                    :494
1st Qu.:0.0
            JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max.
       :1.0
```

```
> show(snps.10) # show() is generic
A snp.matrix with 1000 rows and 28501 columns
Row names: jpt.869 ... ceu.464
Col names: rs7909677 ... rs12218790
> summary(snps.10)
$rows
  Call.rate
                Heterozygosity
     :0.9879
                       :0.0000
Min.
                Min.
Median :0.9900 Median :0.3078
Mean :0.9900 Mean
                       :0.3074
Max. :0.9919
                Max. :0.3386
$cols
                                                  P.AA
    Calls
                Call.rate
                                  MAF
Min.
       : 975
              Min.
                     :0.975 Min.
                                    :0.0000 Min.
                                                    :0.00000
Median : 990
              Median :0.990 Median :0.2315 Median :0.26876
Mean
       : 990
              Mean
                     :0.990 Mean
                                    :0.2424 Mean
                                                    :0.34617
Max.
       :1000
              Max.
                     :1.000
                             Max.
                                    :0.5000
                                             Max.
                                                    :1.00000
     P.AB
                     P.BB
                                     z.HWE
Min.
       :0.0000 Min.
                       :0.00000
                                 Min.
                                        :-21.9725
Median :0.3198 Median :0.27492
                                 Median : -1.1910
Mean :0.3074 Mean :0.34647
                                Mean : -1.8610
Max. :0.5504 Max. :1.00000
                                 Max.
                                          3.7085
                                       :
                                 NA's :
                                          4.0000
```

- 28501 SNPs, all with Allele 1, Allele 2
- 1000 subjects, 500 controls (cc=0) and 500 cases (cc=1)
- Far too much data for a regular summary() of snps.10 even in this small example

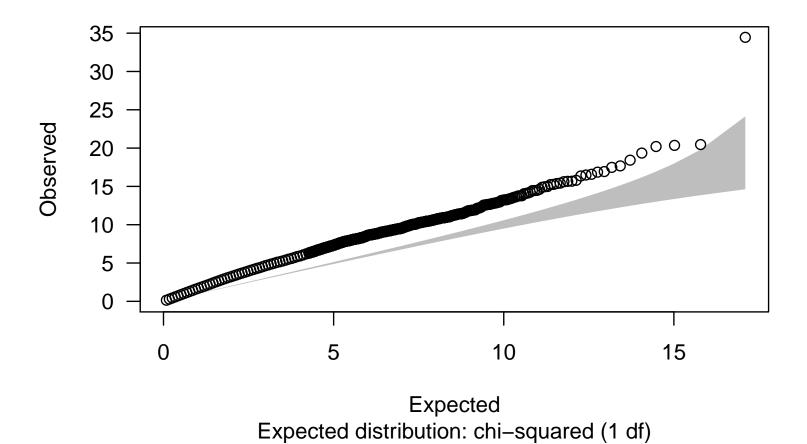
We'll use just the column summaries, and a (mildly) 'clean' subset;

```
> snpsum <- col.summary(snps.10)
> use <- with(snpsum, MAF > 0.01 & z.HWE<sup>2</sup> < 200)
> table(use)
use
FALSE TRUE
317 28184
```

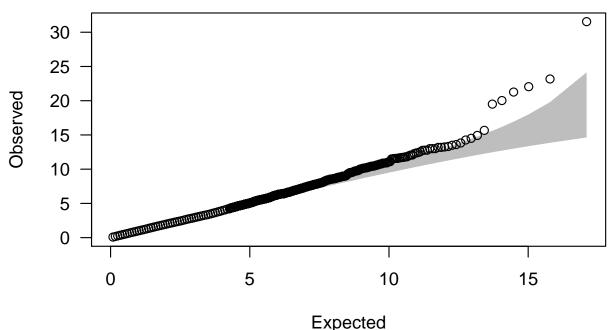

Now do single-SNP tests for each SNP, and extract the p-value for each SNP, along with its location;

```
tests <- single.snp.tests(cc, data = subject.support,
+ snp.data = snps.10)
```

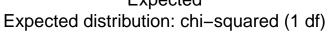
pos.use <- snp.support\$position[use]
p.use <- p.value(tests, df=1)[use]</pre>


We'd usually give a table of 'top hits,' but...

plot(hexbin(pos.use, -log10(p.use), xbin = 50))

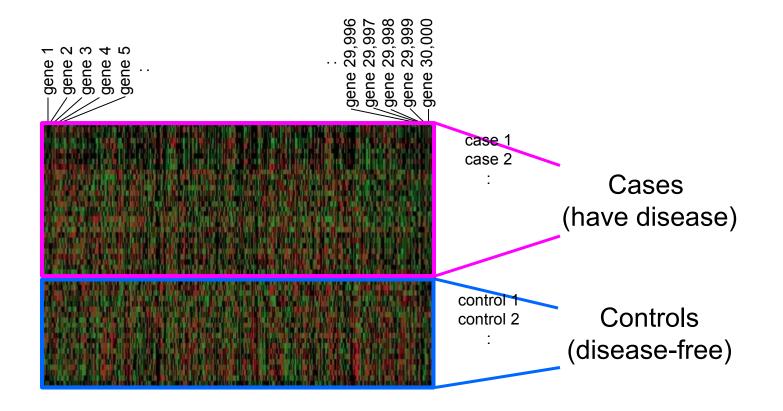

Counts

qq.chisq(chi.squared(tests, df=1)[use], df=1)



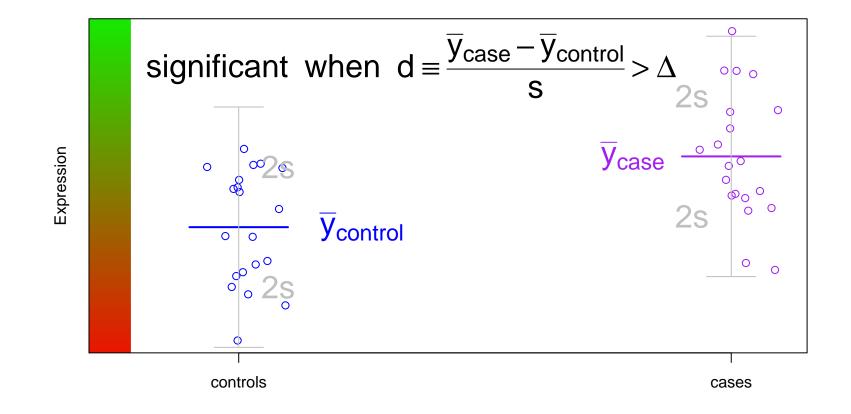
QQ plot

```
tests2 <- single.snp.tests(cc, stratum, data = subject.support,
+ snp.data = snps.10)
qq.chisq(chi.squared(tests2, 1)[use], 1)
```



QQ plot

(SAM)


SAM is a popular new method (Tusher et al 2001) which identifies differentially expressed genes

i.e. large red/green difference between cases and controls

(SAM)

Why so popular? Here's the traditional method;

Do this \times 30,000 genes; *d* in each is **quite unstable**. Small values of *s* give large *d*, which may give **false positive** results

(SAM)

SAM has a quick fix for this problem;

$$\begin{aligned} \text{Traditional} & \text{SAM} \\ d_i = \frac{\bar{y}_{i,\text{case}} - \bar{y}_{i,\text{control}}}{s_i} & d_i = \frac{\bar{y}_{i,\text{case}} - \bar{y}_{i,\text{control}}}{s_i + s_0} \end{aligned}$$

For each gene (each i), SAM's s_0 borrows strength from the other genes.

SAM (and siggenes) then does some clever permutation testing to produce False Discovery Rates

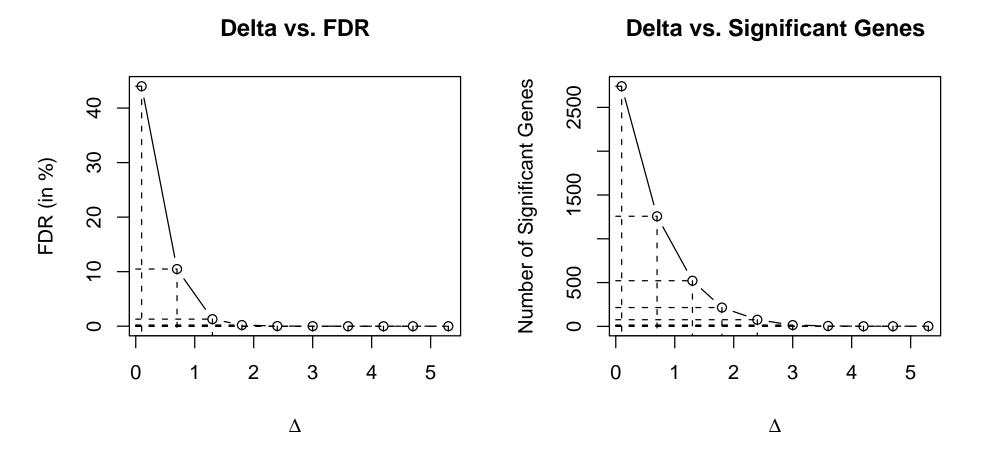
(SAM)

Golub et al (1999) give differential expression for 3,051 genes, in 27 'controls' (ALL) and 11 'cases' (AML)

- > library(multtest)
- > data(golub)
- > table(golub.cl)
 - 0 1
- 27 11

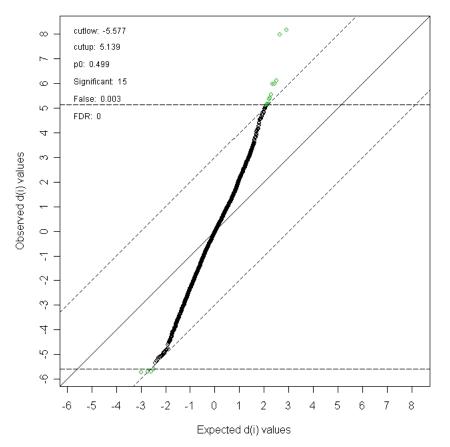
Now let's do the SAM analysis; we give a **random seed** for the permutations – and tell R how many to do;

```
> sam.out <- sam(golub, golub.cl, B=100, rand = 123)</pre>
```


... takes only a few seconds. Use B=1000 or more if you can

(SAM)

> summary(sam.out)												
s0 = 0.0584 (The 0 % quantile of the s values.)												
Number of permutations: 1000												
D	elta pO	False	Called	FDR	cutlow	cutup	j2	j1				
1	0.1 0.499	2420.329	2742	0.440123	-0.160	0.244	1446	1756				
2	0.7 0.499	264.208	1257	0.104804	-1.247	1.438	746	2541				
3	1.3 0.499	13.526	521	0.012945	-2.270	2.488	325	2856				
4	1.8 0.499	0.903	215	0.002094	-3.119	3.311	139	2976				
5	2.4 0.499	0.043	76	0.000282	-4.157	4.259	44	3020				
6	3.0 0.499	0.003	15	9.97e-05	-5.577	5.139	4	3041				
7	3.6 0.499	0	5	0	-Inf	5.971	0	3047				
8	4.2 0.499	0	2	0	-Inf	7.965	0	3050				
9	4.7 0.499	0	2	0	-Inf	7.965	0	3050				
10	5.3 0.499	0	2	0	-Inf	7.965	0	3050				

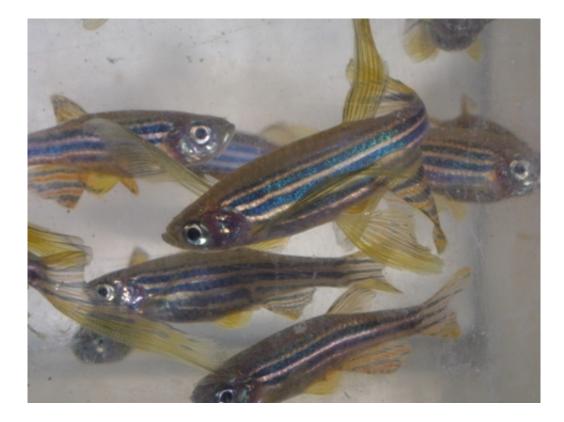

p0 is the **prior** probability of differential expression. Also note that the FDR values are **rounded**

> plot(sam.out)

(SAM)

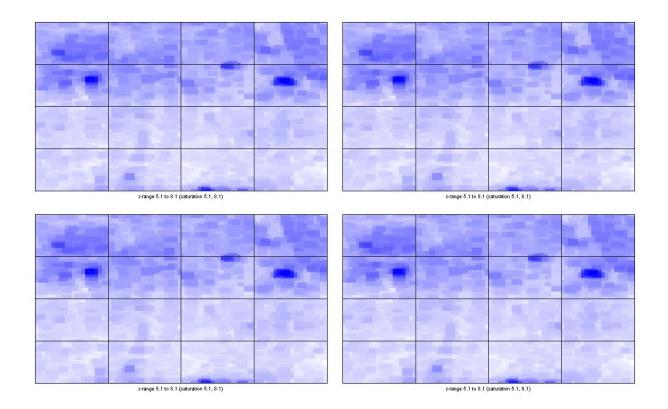
> plot(sam.out, 3) #specifies Delta

SAM Plot for Delta = 3


The limma package can do **several** analyses for microarrays. It reads in **raw data**, in standard formats

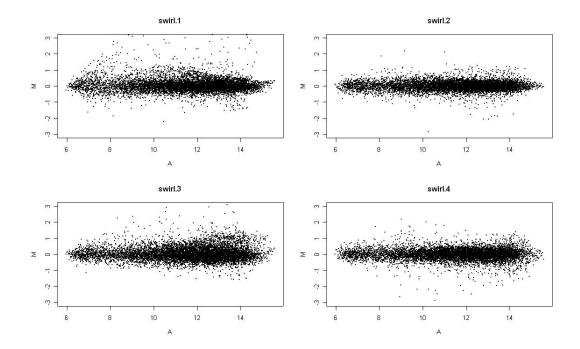
```
> library(limma)
> my.files <- dir(pattern=".spot")
> my.files
[1] "swirl.1.spot" "swirl.2.spot" "swirl.3.spot" "swirl.4.spot"
> RG <- read.maimages(my.files, source="spot")
Read swirl.1.spot
Read swirl.2.spot
Read swirl.3.spot
Read swirl.4.spot
```

What is swirl? A mutation affecting **zebrafish**



What is swirl? A mutation affecting **zebrafish**

We have 2 mutants, and 2 wild-type fish


Here are the red intensities from each microarray;

- need to normalize each array (or get a bigger sample!)

limma has 'default' normalization techniques

- > MA1 <- normalizeWithinArrays(RG)</pre>
- > MA2 <- normalizeBetweenArrays(MA1)</pre>

Can you guess where the 'signals' are?

limma fits 'plain' models to each gene, and also 'robustifies' them with an Empirical Bayes approach (much the same as SAM)

```
> fit1 <- lmFit(MA2, design=c(-1,1,-1,1))</pre>
> options(digits=3); toptable(fit, n=30, adjust="fdr")
              t P.Value adj.P.Val
        М
                                    В
2961 -2.66 -20.8 1.44e-07 0.00121 7.55
3723 -2.19 -17.6 4.59e-07 0.00194 6.75
1611 -2.19 -16.1 8.44e-07 0.00238 6.29
7649 -1.60 -14.2 2.02e-06 0.00326 5.58
515 1.26 13.7 2.55e-06 0.00326 5.39
> fit2 <- eBayes(fit1)</pre>
> options(digits=3); topTable(fit2, n=30, adjust="fdr")
    Block Row Column
                         TD
                              Name
                                      M A
                                                 t P.Value adj.P.Val
                                                                        В
2961
                  9 fb85d05 18-F10 -2.66 10.33 -20.8 1.44e-07
                                                              0.00121 7.55
        6 14
3723 8 2 3 control Dlx3 -2.19 13.24 -17.6 4.59e-07
                                                              0.00194 6.75
1611 4 2
                  3 control D1x3 -2.19 13.45 -16.1 8.44e-07 0.00238 6.29
                 17 fb58g10 11-L19 -1.60 13.49 -14.2 2.02e-06 0.00326 5.58
7649 15 11
515
        1 22
                  11 fc22a09 27-E17 1.26 13.19 13.7 2.55e-06
                                                              0.00326 5.39
```