4. Model fitting

Thomas Lumley
Ken Rice

Universities of Washington and Auckland

Liège, September 2011
Regression commands

Two of the most important R commands;

- `lm()`: fits Linear Models

- `glm()`: fits Generalized Linear Models

(If you’ve used SAS, its `glm` is not the same as R’s)

‘Linear Regression’ and ‘Logistic Regression’ are special cases.

There’s a lot to learn here – entire graduate courses! – so the help files are huge. How are `lm()`, `glm()` used in genetics?
Linear regression, with SNPs

Many analyses fit the ‘additive model’

\[y = \beta_0 + \beta \times \#\text{minor alleles} \]

cholesterol

\[\begin{array}{c}
0 \\
1 \\
2 \\
\end{array} \]

\[\begin{array}{c}
AA \\
Aa \\
aa \\
\end{array} \]
Linear regression, with SNPs

An alternative is the ‘dominant model’;

\[y = \beta_0 + \beta \times (G \neq AA) \]
Linear regression, with SNPs

or the ‘recessive model’;

\[y = \beta_0 + \beta \times (G == AA) \]
Linear regression, with SNPs

Finally, the ‘two degrees of freedom model’;

\[
y = \beta_0 + \beta_{Aa} \times (G == Aa) + \beta_{aa} \times (G == aa)
\]
Use of \texttt{lm()} in genetics

The \texttt{lm()} command fits all of these, in the same way. Formally,

\begin{verbatim}
 lm(outcome \sim genetic.predictor, [...])
\end{verbatim}

estimates the association between outcome and predictor

The \textbf{optional} arguments [...] might be

- \texttt{data = my.data} – your dataset
- \texttt{subset = race=="CEPH"} – use partial data
- \texttt{weights =} – for advanced analyses
Use of `lm()` in genetics

How to make the `genetic.predictor` variable? Suppose you had genotypes stored as character strings ("AA"/"Aa"/"aa") in a vector `g`. You might use these commands:

<table>
<thead>
<tr>
<th>Chosen Model</th>
<th>Command to define variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive</td>
<td><code>genetic.predictor <- (g=="Aa") + 2*(g=="aa")</code></td>
</tr>
<tr>
<td>Dominant</td>
<td>`genetic.predictor <- (g=="Aa")</td>
</tr>
<tr>
<td>Recessive</td>
<td><code>genetic.predictor <- g=="aa"</code></td>
</tr>
<tr>
<td>2 degs of freedom</td>
<td><code>genetic.predictor <- factor(g)</code></td>
</tr>
</tbody>
</table>

When R meets `FALSE` or `TRUE` in a ‘math’ setting, it will **coerce** them to be zero or one. So `1 + 2*TRUE` is 3, `TRUE + 2*FALSE` is 1, etc. Using `factor()` sets up several binary variables:

- There are *many* other ways to do this!
 - Use `table(g, genetic.predictor)` to check your method
- Often, genotypes may be stored as 0/1/2. This is easier to work with in R – but makes it harder to decide if A/C/G/T is the minor allele, or risk allele.
lm(): Estimates, Intervals, p-values

lm() produces **point estimates** for your model;

```r
> genetic.predictor <- (g=="Aa") + 2*(g=="aa") #using additive model
> my.lm <- lm( cholesterol ~ genetic.predictor )
> my.lm
Call:
lm(formula = cholesterol ~ genetic.predictor)
Coefficients:
   (Intercept)   predictor
       0.2104       0.9507
```

– also available via `my.lm$coefficients` or `coef(my.lm)`.

The coefficients in the output tell you the **additive increase** in outcome associated with a **one-unit** difference in the genetic predictor.

The coefficient for `predictor` is in units of cholesterol per 'a' allele.
You will also want confidence intervals:

```r
> confint.default(my.lm)
     2.5 %   97.5 %
(Intercept) 0.08391672 0.3368275
predictor  0.85279147 1.0486953
```

Remember to round these numbers to an appropriate number of significant figures! (2 or 3 is usually enough)

We are seldom interested in the Intercept
In this data, we have **strong evidence** of an **additive effect** of the minor allele on cholesterol.

- **summary(my.lm)** gives **many** other details — ignore for now

- Confidence intervals are just **Estimate ± 2×Std.Error**

lm(): Estimates, Intervals, \(p \)-values

Two-sided \(p \)-values are also available;

```
> summary(my.lm)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.21037    0.06426  3.274  0.00119 **
predictor    0.95074    0.04977 19.101  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
Use of `glm()` in genetics

Logistic regression is the ‘default’ analysis for binary outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Type</th>
<th>Regression</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>Continuous</td>
<td>Linear</td>
<td>Difference in Outcome</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI > 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are odds? Really just probability...
Use of \texttt{glm()} in genetics

Odds are a [gambling-friendly] measure of chance;

\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
axis lines=left,
width=\textwidth,
height=0.5\textwidth,

ymajorgrids=true,

xtick={1,2,3},
xticklabels={AA,Aa,aa},

ymin=0,ymax=1,

\node at (axis cs:1,0.5) {33\% 1};
\node at (axis cs:1,0.33) {66\% 2};
\node at (axis cs:2,0.5) {50\% 1};
\node at (axis cs:2,0.5) {50\% 1};
\node at (axis cs:3,0.5) {90\% 9};
\node at (axis cs:3,0.33) {10\% 1};

\end{axis}
\end{tikzpicture}
\end{figure}
Use of \texttt{glm()} in genetics

Odds are a [gambling-friendly] measure of chance;

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Prob of survival, 10 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>66%</td>
</tr>
<tr>
<td>Aa</td>
<td>50%</td>
</tr>
<tr>
<td>aa</td>
<td>50%</td>
</tr>
</tbody>
</table>

Prob(death)

- 33% 1
- 66% 2
- 50% 1
- 90% 9
- 10% 1

What are odds ratios?
Use of `glm()` in genetics

Odds are a [gambling-friendly] measure of chance;

- so what are odds ratios?
Use of `glm()` in genetics

Using the data from slide 4.12:

```r
> genpred2 <- factor(g) # the 2df model
> glm1 <- glm(dead10yrs ~ genpred2, family=binomial)
> coef(glm1)

                  pred2Aa         pred2aa
    0.6931         2.8904
```

- These are log odds ratio estimates; to transform to OR, use $e^{0.6931} = 2, e^{2.8904} = 18$

- They are given relative to the baseline group – ‘AA’ in this case

- Don’t forget the `family=binomial` argument!
Use of `glm()` in genetics

Confidence intervals, p-values as with `lm()`, for the log odds ratios;

```r
> confint.default(glm1)

<table>
<thead>
<tr>
<th></th>
<th>2.5 %</th>
<th>97.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>genpred2Aa</td>
<td>0.1201986</td>
<td>1.2660957</td>
</tr>
<tr>
<td>genpred2aa</td>
<td>2.1148912</td>
<td>3.6658523</td>
</tr>
</tbody>
</table>
```

```r
> summary(glm1)

|          | Estimate | Std. Error | z value | Pr(>|z|) |
|----------|----------|------------|---------|----------|
| genpred2Aa | 0.6931   | 0.2923     | 2.371   | 0.01773 * |
| genpred2aa | 2.8904   | 0.3957     | 7.305   | 2.77e-13 *** |
```

Use `exp()` to get odds ratio estimates, intervals; p-values are scale-independent
The formula syntax

We saw `lm(y ~ genetic.predictor)` and `glm(y ~ genpred2)`. To see how phenotype depends on several covariates, we specify e.g.

\[y \sim \text{genotype.pred} + \text{age} + \text{sex} \]

– formally, this gives *multivariate regression*; the genotype.pred coefficients reflect the genotype effects *adjusted for age and sex*

- Separate covariates with ‘+’. This is *not* addition!
- For now, make predictor variables first, then do regression. It’s possible to do everything in one step, but use of e.g. ‘+’ will confuse R – unless you’re careful.
- For keen people; in the formula syntax, * indicates that interactions should be fitted, I() insulates mathematical operations, -1 removes the intercept... see `?formula`
- For very keen people; `vcovHC()` in the sandwich package provides ‘robust’ standard errors; `coeftest()` in the lmtest package can use them to give ‘robust’ tests.