Summer Institute in Statistical Genetics
Module 6: Computing for Statistical Genetics

Thomas Lumley
Ken Rice

4. Model Fitting

Auckland, December 2008
Regression commands

Two of the most important R commands:

- `lm()`: fits **Linear Models**
- `glm()`: fits **Generalized Linear Models**

(If you’ve used SAS, its `glm` is **not** the same as R’s)

‘Linear Regression’ and ‘Logistic Regression’ are special cases.

The help files are huge (and generic) – how are `lm()`, `glm()` used in genetics?
Use of \texttt{lm()} in genetics

For a continuous outcome,

\begin{equation*}
\text{lm(outcome} \sim \text{genetic.predictor, [...])}
\end{equation*}

estimates the association between outcome and predictor

The \textbf{optional} arguments [...] might be

- data = my.data – your dataset
- subset = race=="CEPH" – use partial data
- weights = – for advanced analyses

<table>
<thead>
<tr>
<th>Model Description</th>
<th>predictor</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of minor alleles</td>
<td>((g=='Aa') + 2*(g=='aa')) \text{ or as.numeric(g) }</td>
<td>Additive</td>
</tr>
<tr>
<td>Presence of minor allele</td>
<td>((g=='Aa')</td>
<td>(g=='aa')) \text{ g=='aa' factor(g) }</td>
</tr>
<tr>
<td>Homozygous for minor allele</td>
<td></td>
<td>Recessive</td>
</tr>
<tr>
<td>Distinct effects for hetero/homozygous</td>
<td></td>
<td>2 parameter, or “2 df”</td>
</tr>
</tbody>
</table>
Use of \texttt{lm()} in genetics

Some data; cholesterol levels plotted by genotype (single SNP)
Use of \texttt{lm()} in genetics

Additive model (the most commonly used)
Use of \texttt{lm()} in genetics

Dominant model (best fit to this data)
Use of \texttt{lm()} in genetics

Recessive model (least stable for rare aa)
Use of `lm()` in genetics

2 parameter model (robust but can be overkill)
lm(): Estimates, Intervals, p-values

lm() produces **point estimates** for your model;

```r
> predictor <- (g=='Aa') + 2*(g=='aa') #the number of 'a' alleles
> my.lm <- lm( cholesterol ~ predictor )
> my.lm
Call:
  lm(formula = cholesterol ~ predictor)
Coefficients:
  (Intercept)  predictor
        0.2104      0.9507
```

- also available via `my.lm$coefficients`.

The coefficients in the output tell you the **additive increase** in outcome associated with a **one-unit** difference in the genetic predictor.

The coefficient for `predictor` is in units of cholesterol.
You will also want *confidence intervals*;

```r
> confint.default(my.lm)
     2.5 %     97.5 %
(Intercept) 0.08391672  0.3368275
predictor   0.85279147  1.0486953
```

Remember to **round these numbers** to an appropriate number of significant figures! (2 or 3 is usually enough)

We are **seldom** interested in the Intercept
lm(): Estimates, Intervals, p-values

Two-sided **p-values** are also available;

```r
> summary(my.lm)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.21037   0.06426  3.274  0.00119 **
predictor    0.95074   0.04977 19.101  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

In this data, we have **strong evidence** of an **additive effect** of the minor allele on cholesterol.

summary(my.lm) gives **many** other details – ignore for now

Confidence intervals are just **Estimate ± 2×Std.Error**
Use of \texttt{glm()} in genetics

Logistic regression is the ‘default’ analysis for binary outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Type</th>
<th>Regression</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>Continuous</td>
<td>Linear</td>
<td>Difference in Outcome</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>Binary</td>
<td>Logistic</td>
<td>Ratio of odds</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are odds? Really just probability...
Use of `glm()` in genetics

Odds are a [gambling-friendly] measure of chance;

- What are odds ratios?
Use of `glm()` in genetics

Odds are a [gambling-friendly] measure of chance;
Use of \texttt{glm()} in genetics

Odds are a [gambling-friendly] measure of chance;

\begin{figure}
\centering
\includegraphics{chart.png}
\end{figure}

\hline
\textbf{Odds of death} & \textbf{Prob. of death} \\
66% & 2 \\
33% & 1 \\
50% & 1 \\
50% & 1 \\
10% & 1 \\
90% & 9 \\
10% & 1 \\
\hline
\end{tabular}

\text{– so what are odds ratios?}
Use of \texttt{glm()} in genetics

Using the data from the bar charts;

\begin{verbatim}
> pred2 <- factor(g)
> glm1 <- glm(dead10yrs ~ pred2, family=binomial)
> glm1

 pred2Aa pred2aa
 0.6931 2.8904
\end{verbatim}

These are log odds ratio estimates; to transform to OR, use $e^{0.6931} = 2, e^{2.8904} = 18$

They are given relative to the baseline group – ‘AA’ in this case

Don’t forget the family=binomial argument!
Use of `glm()` in genetics

Confidence intervals, p-values as with `lm()`, for the log odds ratios:

```r
> confint.default(glm1)
     2.5 %    97.5 %
pred2Aa  0.1201986 1.2660957
pred2aa  2.1148912 3.6658523
```

```r
> summary(glm1)

             Estimate  Std. Error   z value  Pr(>|z|)   
pred2Aa     0.6931      0.2923  2.37100  0.01773 *  
pred2aa     2.8904      0.3957  7.30568  < 2e-16 ***
```

Use `exp()` to get odds ratio estimates, intervals; p-values are scale-independent
The formula syntax

We fit \(\text{lm}(y \sim \text{predictor}) \) and \(\text{glm}(y \sim \text{pred2}) \). To see how phenotype depends on several covariates, we specify e.g.

\[
y \sim \text{genotype.pred} + \text{age} + \text{sex}
\]

– formally, this gives multivariate regression; the genotype.pred coefficients reflect the genotype effects adjusted for age and sex

• Separate covariates with ‘+’. This is not addition!
• For now, make predictor variables first, then do regression; doing everything in one step is possible, but requires care when using e.g. addition (see above)
• For keen people; in the formula syntax, * indicates that interactions should be fitted, I() insulates mathematical operations, -1 removes the intercept... see ?formula