Summer Institute in Statistical Genetics Module 6: Computing for Statistical Genetics

Thomas Lumley Ken Rice
2. Learning to Draw

Auckland, December 2008

Graphics

R (and S-PLUS) can produce graphics in many formats, including:

- on screen
- PDF files for $\operatorname{AT}_{E^{X}}$ or emailing to people
- PNG or JPEG bitmap formats for web pages (or on nonWindows platforms to produce graphics for MS Office). PNG is also useful for graphs of large data sets.
- On Windows, metafiles for Word, Powerpoint, and similar programs

Setting up a graph

Graphs should usually be designed on the screen and then may be replotted on eg a PDF file (for Word/Powerpoint you can just copy and paste)

For printed graphs, you will get better results if you design the graph at the size it will end up, eg:
\#\# on Windows
windows(height=4,width=6)
\#\# on Unix
x11(height=4, width=6)

Word or ${ }^{A} T_{E X}$ can rescale the graph, but when the graph gets smaller, so do the axis labels...

Setting up a graph

Created at full-page size

Setting up a graph

Created at 5×6 inches

Finishing a graph

After you have the right commands to draw the graph you can produce it in another format: eg

```
## start a PDF file
pdf("picture.pdf",height=4,width=6)
## your drawing commands here
```

\#\#\# close the PDF file
dev.off()

Drawing

Usually use plot() to create a graph and then lines(), points(), legend(), text(), and other commands to annotate it.
plot() is a generic function : it does appropriate things for different types of input
\#\# scatterplot
plot(salary\$year, salary\$salary)
\#\# boxplot
plot(salary\$rank, salary\$salary)
\#\# stacked barplot
plot(salary\$field, salary\$rank)
and others for other types of input.

Formula interface

The plot() command can be written
plot(salary ${ }^{\sim}$ rank, data=salary)
introducing the formula system that is also used for regression models. The variables in the formula are automatically looked up in the data= argument.

Designing graphs

Two important aspects of designing a graph

- It should have something to say
- It should be legible

Having something to say is your problem; software can help with legibility.

Designing graphs

Important points

- Axes need labels (with units, large enough to read)
- Color can be very helpful (but not if the graph is going to be printed in black and white).
- Different line or point styles usually should be labelled.
- Points plotted on top of each other won't be seen

After these are satisfied, it can't hurt to have the graph look nice.

Options for plot()

Set up a data set: daily ozone concentrations in New York, summer 1973

```
data(airquality)
names(airquality)
airquality$date<-with(airquality, ISOdate(1973,Month,Day))
```

All these graphs were designed at $4 \mathrm{in} \times 6 \mathrm{in}$ and stored as PDF files

Options for plot()

plot(Ozone~date, data=airquality)

Options for plot()

plot(Ozone~date, data=airquality,type="l")

Options for plot()

plot(Ozone~date, data=airquality,type="h")

Options for plot()

plot(Ozone~date, data=airquality,type="n")

Options for plot()

bad<-ifelse(airquality\$Ozone>=90, "orange","forestgreen")
plot(Ozone~date, data=airquality,type="h", col=bad)
abline(h=90,lty=2,col="red")

Notes

- type= controls how data are plotted. type="n" is not as useless as it looks: it can set up a plot for latter additions.
- Colors can be specified by name (the colors() function gives all the names), by red/green/blue values (\#rrggbb with six base-sixteen digits) or by position in the standard palette of 8 colors.
- abline draws a single straight line on a plot
- ifelse() selects between two vectors based on a logical variable.
- lty specifies the line type: 1 is solid, 2 is dashed, 3 is dotted, then it gets more complicated.

Adding to a plot

```
data(cars)
plot(speed~dist,data=cars)
with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))
plot(speed~dist,data=cars, log="xy")
with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))
with(cars, lines(supsmu(dist,speed), col="purple", lwd=2))
legend(2,25, legend=c("lowess","supersmoother"),bty="n", lwd=2,
    col=c("tomato","purple"))
```


Adding to a plot

Adding to a plot

Adding to a plot

Notes

- lines adds lines to an existing plot (points() adds points).
- lowess() and supsmu() are scatterplot smoothers. They draw smooth curves that fit the relationship between y and x locally.
- log="xy" asks for both axes to be logarithm (log="x" would just be the x-axis)
- legend() adds a legend

Boxplots

data(api, package="survey")
boxplot(mobility ${ }^{\sim}$ stype, data=apipop, horizontal=TRUE)

Notes

- boxplot computes and draws boxplots.
- horizontal=TRUE turns a boxplot sideways
- $x l a b$ and $y l a b$ are general options for x and y axis labels.

Large data sets

Scatterplots quickly get crowded. For example, the California Academic Performance Index is reported on 6194 schools
> plot(api00~api99,data=apipop)
> colors<-c("tomato","forestgreen", "purple") [apipop\$stype]
> plot(api00~api99,data=apipop,col=colors)

Large data sets

Large data sets

Density plots

For a single large scatterplot some form of aggregation is useful
library(hexbin)
with(apipop, plot(hexbin(api99,api00), style="centroids"))
hexbin is in the hexbin package from the Bioconductor project. It computes the number of points in each hexagonal bin.

The style=centroids plot puts a filled hexagon with size depending on the number of points at the centroid of the points in the bin.

Density plots

Smoothers

For showing multiple groups a scatterplot smoother or perhaps boxplots would be better.
> boxplot(api00~cut(api99,(3:10)*100), data=apipop)
$>\operatorname{par}(\mathrm{las}=1)$
$>\operatorname{par}(\operatorname{mar}=c(5.1,10.1,2.1,2.1))$
> boxplot(api00~interaction(stype,

$$
\operatorname{cut}(\operatorname{api} 99,(3: 10) * 100))
$$

data=apipop, horizontal=TRUE, col=1:3)
plot(api00~api99, data=apipop,type="n")
with(subset(apipop, stype=="E"),
lines(lowess(api99, api00), col="tomato"))
with(subset(apipop, stype=="H"),
lines(lowess(api99, api00), col="forestgreen"))
with(subset(apipop, stype=="M"),
lines(lowess(api99, api00), col="purple"))

Smoothers

Smoothers

Smoothers

Notes

- cut turns a variable into a factor by cutting it at the specified points.
- Note the use of type="n"
- par(mar=) sets the margins around the plot. We need a large left margin for the labels.
- subset takes a subset of a data frame.

Conditioning plots

Ozone is a secondary pollutant, it is produced from organic compounds and atmostpheric oxygen in reactions catalyzed by nitrogen oxides and powered by su nlight.

However, looking at ozone concentrations in NY in summer we see a non-monotone relationship with sunlight

Conditioning plots

Conditioning plots

Here we draw a scatterplot of Ozone vs Solar.R for various subranges of Temp and Wind . A simple version of what is possible with the Trellis system.

```
data(airquality)
coplot(Ozone ~ Solar.R | Temp * Wind, number = c(4, 4),
    data = airquality,
    pch = 21, col = "goldenrod", bg = "goldenrod")
```


Conditioning plots

Mathematical annotation

An expression can be specified in R for any text in a graph (help(plotmath) for details). Here we annotate a graph drawn with polygon.
$\mathrm{x}<-\mathrm{seq}(-10,10$, length=400)
y1<-dnorm(x)
y2<-dnorm ($\mathrm{x}, \mathrm{m}=3$)
$\operatorname{par}(\operatorname{mar}=c(5,4,2,1))$
plot (x,y2,xlim=c(-3,8),type="n",
xlab=quote(Z==frac(mu[1]-mu[2],sigma/sqrt(n))),
ylab="Density")
polygon(c(1.96,1.96,x[240:400],10),
c (0, dnorm (1.96,m=3) , y2 [240:400] , 0) , col="grey80",lty=0)
lines ($\mathrm{x}, \mathrm{y} 2$)
lines ($\mathrm{x}, \mathrm{y} 1$)
polygon(c (-1.96, -1.96, x[161:1] ,-10),
c (0, dnorm ($-1.96, \mathrm{~m}=0$) , y1 [161:1] , 0) , col="grey30",lty=0)
polygon(c (1.96, 1.96, x[240:400],10), c (0, dnorm (1.96,m=0) , y1 [240:400] , 0) , col="grey30")

Mathematical annotation

```
legend(4.2,.4,fill=c("grey80","grey30"),
    legend=expression(P(abs(Z)>1.96,H[1])==0.85,
    P(abs(Z)>1.96,H[0])==0.05),bty="n")
text(0,.2,quote(H[0]: ~ mu[1]==mu[2]))
text(3,.2,quote(H[1]:~~}mu[1]==mu[2]+delta))
```


Mathematical annotation

Maps

> library(maps)
> map('county', 'washington', fill = TRUE, col = grey (sqrt(wa[,10]/(wa[,1]))))
> title(main="Proportion Hispanic")

Maps

Proportion Hispanic

