
6. Writing Big Loops

Ken Rice

Thomas Lumley

Universities of Washington and Auckland

Seattle, July 2016

Writing loops in R

We saw that replicate(), and apply(), sapply() are R’s pre-

ferred way of looping (i.e. doing the same thing many times).

Even for expert useRs, their use requires some careful thought;

debugging code may be complex. Also there are some jobs, such

as iteration, that these loops cannot do.

In this session we’ll talk about some alternatives, and their

application to high-throughput genome-wide studies.

6.1

for() loops

Your first computer program?

for(i in 1:100){

print("Hello world!")

print(i*i)

}

• Everything inside the curly brackets {...} is done 100 times

• Looped commands can depend on i (or whatever you called

the counter)

• R creates a vector i with 1:100 in it. You could use any vector

that’s convenient

6.2

for() loops

for() loops are very intuitive, but have some drawbacks;

• They can be slow;

– ‘growing’ a large dataset is a bad idea;
mydata <- cbind(mydata, rnorm(1000, mean=i))

– so set up blank output first, then ‘fill it in’

• apply() is interpreted slightly faster than for() – but typically
this will not matter, contrary to some urban myths

• for() loops require more typing than apply()! For tasks
which will be repeated, writing a function really is the Right
Thing to do, in the long run.

Using for(i in 1:N) sets up a vector (i) of length N. Do you
really need this?

6.3

for() loops

Two alternatives; (see ?Control for details)

i <- 1; my.mat <- matrix(NA, N, 3)
while(i <= N){

z <- work.on.gene(i)
my.mat[i,] <- summary(z)
i <- i+1
}

– note that we avoided ‘growing’ the output

i <- 1; my.mat <- matrix(NA, N, 3)
repeat{

z <- work.on.gene(i)
my.mat[i,] <- summary(z)
i <- i+1
if(i>=N) break
}

Use apply(), sapply() to avoid the ‘setup’ stage

6.4

Application to whole-genome study

Whole genome studies can look very intimidating...

Genome-wide association study identifies new
susceptibility loci for Crohn disease and implicates
autophagy in disease pathogenesis

6.5

Application to whole-genome study

... however, each p-value on that picture comes from a single

logistic regression.

There may be 2,500,000 tests in total; if each one takes 1/10

sec, the analysis is done in under an hour;

Time per test Total time
0.01 sec 7 hrs
0.1 sec 2 days 22 hrs
1 sec 28 days (!)
5 sec 5 months (!!)

5 mins 24 yrs (!!!)

Cutting time per test from 1 sec → 0.1 sec is clearly worthwhile

– but proposing analyses where each test takes > 5 secs may be

silly.

6.6

Making code run faster, part 1

Some easy ‘streamlining’ ideas;

• Write a function to do just the analysis you want
> my.output <- apply(my.data, 1, my.function)

• Make a compiled version of it – use cmpfun() in the (standard)
compiler package

• Pre-process/‘clean’ your data before analysis; e.g. sum(x)/length(x)

doesn’t error-check like mean(x)

• Similarly, you can streamline glm() to just glm.fit() [as we’ll
see, in some examples]

• Use vectorized operations, where possible

• Store data as matrices, not data.frames

6.7

Making code run faster, part 2

Streamlining, for experts;

• Write small but important pieces of code in C, and call these
from R

• Batch mode processing lets you break down e.g. the
whole genome into 23 chromosomes – great if you have 23
processors to use.

– Save your analysis in 23 output files

– read in the answers

– finally produce e.g. multi-color pictures

Various packages help implement this, but use is platform-
specific

6.8

Timing

“Premature optimization is the root of all evil”

Donald Knuth

Do you need to optimize your code? Running 2 or 3 times faster

may not be worth the time spent coding/debugging!

But going at least an order of magnitude faster is almost always

A Good Thing.

After you have code that works, you may need to speed it up.

Experienced useRs may be able to ‘eyeball’ the problem... but

actual measurement is an easier and more reliable approach!

6.9

Timing

• proc.time() returns the current time. Save it before a task

and subtract from the value after a task.

• system.time() times the evaluation of expression

• R has a profiler ; this records which functions are being run,

many times per second. Rprof(filename) turns on the profiler,

Rprof(NULL) turns it off. summaryRprof(filename) reports how

much time was spent in each function.

It’s better to improve the time-consuming functions, if possible.

Remember that a 1000-fold speedup in a function used 10% of

the time is less helpful than a 30% speedup in a function used

50% of the time.

6.10

High-throughput code – caveats

We saw earlier that ‘weird’ datasets can crash your code.
Inevitably, these will appear in high-throughput work, and a crash
at e.g. SNP #2,999,999,999 will be very frustrating.

• Some ‘weirdness’ is easy to spot;

– Everyone is homozygous
– All cases missing
– No variation in outcome ...

• In more complex models, it’s easier to ‘try it and see’. Use
tryCatch()

• When ‘weirdness’ is found, high-throughput code should;
– Produce sensible output (NA, -999 etc)
– Handle these appropriately in summary output

6.11

	Writing loops in R
	for() loops
	Application to whole-genome study
	Making code run faster, part 1
	Making code run faster, part 2
	Timing
	High-throughput code – caveats

