
5. Replication: simulation and

permutation

Ken Rice

Thomas Lumley

Universities of Washington and Auckland

Seattle, July 2014

Overview

• Simulation

• Permutation tests

• Power (briefly)

• Smallest p-value across multiple models

• Cautionary notes, which we won’t get to

5.1

Simulation: easier than doing maths

A question from analysis of survival traits – and its answer!

What is the expected value of the median of a sample,

size n = 51, of independent data from Exp(1)?

What is its variance?

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Observation

D
en

si
ty

Exp(1)
Median of Exp(1), n=51

5.2

Simulation: easier than doing maths

The picture didn’t make it obvious? Here are the exact answers;

E[Median51] =
2178178936539108674153

3099044504245996706400

E[Median2
51] =

2467282316063667967459233232139257976801959

4802038419648657749001278815379823900480000

These are 0.70286 and 0.51380 to 5 d.p. – so the variance is
0.51380 − 0.702862 = 0.01978.

• Yes, there are ‘pretty’ answers here

• In general there aren’t – but the ‘expectation’ (E[...]) terms
just mean averaging over lots of datasets – which is easy,
with a computer

• We can get a good-enough answer very quickly

5.3

Simulation: easier than doing maths

We’ll write code that;

1. Generates samples of size n = 51 from Exp(1)

2. Calculates their median and returns this number

3. Replicate steps 1 and 2 many times, then work out the mean

and variance of the stored numbers

Steps 1 and 2 are inside the curly brackets;

set.seed(4)
many.medians <- replicate(10000, {

mysample <- rexp(n=51, rate=1) # take a sample, size 51
median(mysample) # calcuate & output its median
})

The function set.seed() tells R where to start its random-

number generator – this is important, as it means we can repeat

the code and get the same answers. Choose any ‘seed’ you like.

5.4

Simulation: easier than doing maths

To finish, take mean & variance of our 10000 sample medians;

> mean(many.medians)
[1] 0.702171 # exact answer is 0.70286
> var(many.medians)
[1] 0.01955728 # exact answer is 0.01978

NB: for large-enough values of 10000, we could work basically
anything about the sample median, with little extra work;

Histogram of many.medians

Observed Median

D
en

si
ty

0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

5.5

Simulation: easier than doing maths

Notes on the coding;

• Yes, you could write a for() loop. (See Session 6, or
?Control) But this approach helps break down the job into
manageable pieces – then finally deal with the looping

• This approach is also easier to setup – just create many.medians

and easier to edit afterwards, e.g. changing the value of
10000. Using for() loops, it’s surprisingly easy to mess this
up (more in Session 6)

• By default, the last object evaluated in a function is what it
returns. Can also use return()

• We used rexp(), see also rnorm(), rgamma(), rbinom, rpois()

etc etc

5.6

Permutation test

A classical statistical question: are the data we’ve observed
unexpected, if there’s nothing going on?

An example where we can answer this is the sleep data, from a
small clinical trial;

●● ●● ● ● ●●● ●

●● ●●● ● ●● ●●

extra hours sleep

tr
ea

tm
en

t

−1 0 1 2 3 4 5

1
2

• 10 subjects per group

• Groups receive different treatments, we record how many
hours sleep they get, compared to baseline

• Mean extra hours sleep is higher in group 2 (2.33 hrs vs 0.75
hrs, so difference is 1.58 hrs)

5.7

Permutation test

What if there were nothing going on∗, i.e. what if any differences
in mean were just chance? If so, the data we saw would be just
as likely as that obtained assigning the group labels at random;

●

● ●●

●

●

●

●● ●

●

●

●●

●

● ●

●

●●

●●

●

●

● ● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●

●●

●

● ●

●

●● ● ● ●

●

●

●●● ●●● ●

●● ●

●

●●

●● ● ●

●●●

●

●● ●

●● ●

●

● ●

● ●● ●● ●

● ●●

● ●

●●

●

●● ● ●●

●●

●

● ●●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●● ●

● ● ● ●●● ●●

● ●●●

●

●

●

●●

●

● ●

● ●

●

●

●

● ●●

● ●

●

● ● ●

● ●

●

●●

●●

●

●

●●● ●

●●

●●●

● ●● ●●

* Formally, what if the null hypothesis of equal means held, in the population

from which this data has been sampled?

5.8

Permutation test

To measure how unexpected our data is, we compute the

red/green difference in means for many of these permutations,

and see how the observed data compares.

orig.mean.diff <-
mean(sleep$extra[sleep$group==2]) - mean(sleep$extra[sleep$group==1])

orig.mean.diff

set.seed(4)
many.mean.diff <- replicate(10000,{

group.shuffle <- sample(sleep$group)
mean(sleep$extra[group.shuffle==2]) - mean(sleep$extra[group.shuffle==1])
})

• sample() returns a random shuffle of a vector

• The same calculation is made, for the original data and the

shuffled versions; the difference in means is called the test

statistic

5.9

Permutation test

How does original data (w/ mean diff=1.58) compare to these?

Histogram of many.mean.diff

many.mean.diff

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

0
20

0
30

0
40

0
50

0

> table(many.mean.diff>orig.mean.diff)
FALSE TRUE
9601 399

> mean(many.mean.diff>orig.mean.diff)
[1] 0.0399
> mean(abs(many.mean.diff)>abs(orig.mean.diff))
[1] 0.0789

5.10

Permutation test

• The proportion of sample in the RH tail is a (valid) p-value
for a one-tailed test, where the alternative is that green >
red. p = 0.04, here

• The proportion in both tails is the p-value for a two-tail test;
p = 0.079

• There is some ‘Monte Carlo’ error in these p-values; roughly
±0.004 here, i.e. 2 decimal places in p. If that’s not good
enough, use more permutations. (Here, could use all 184,756
– but in larger samples it’s not possible)

For a quicker but somewhat approximate version of this test;

> t.test(extra~group, data=sleep)
Welch Two Sample t-test
data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0

The t-test makes fewer assumptions than many people think!

5.11

How many permutations?

With 10000 permutations the smallest possible p-value is 0.0001,

and the uncertainty near p = 0.05 is about ±0.4%

If we have multiple testing we may need much more precision.

Using 100,000 permutations reduces the uncertainty near p =

0.05 to ±0.1% and allows accurate p-values as small as 0.00001.

A useful strategy is to start with 1000 permutations and continue

to larger numbers only if p is small enough to be interesting, eg

p < 0.1.

Parallel computing of permutations is easy: just run R on multiple

computers.

5.12

Example: power calculation

A reminder: statistical tests reject H0 whenever p(Y) < α;

α is known as the size or level of the test; it is the probability

of declaring a signal when none is present. (By convention, we

almost always use α = 0.05.)

The power of the test is the probability you reject H0, (i.e. get

p(Y) < α) when a signal is truly present.

Replications, Y* (infinitely many, under true model)

1 50 100 150

0
αα

1

p
va

lu
e,

 p
((Y

*))

Note: probabilities are means of binary (0/1) variables.

5.13

Example: power calculation

To evaluate power, for a comparison of two groups – like the
sleep study;

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

outcome, Y

N(µ1,σ1
2)

N(µ2,σ2
2)

• Assume outcomes are Normal, means µ1, µ2, SDs σ1, σ2

• Sample sizes n1, n2 in each group

• Use unequal-variance two-sided t-test for analysis

5.14

Example: power calculation

Using replicate() to do the work;

do.one <- function(n1, n2, mu1, mu2, s1, s2, alpha){
y1 <- rnorm(n1, mu1, s1)
y2 <- rnorm(n2, mu2, s2)
t.test(y1, y2)$p.value < alpha # default is unequal variance

}

set.seed(4)
bigB <- 10000
mean(replicate(bigB, do.one(20, 20, 0, 0.7, 1, 1.5, 0.05)))

• Mean here is 3895/10000 = 0.3895, i.e. about 40% power.
Precision to multiple decimal places matters much less than
earlier example, calculating p

• For equal variances, can use power.t.test(), i.e. built-in
maths-only version

• This version is slower to compute – but much more flexible,
e.g. regression-based analyses, multi-step analyses, any
distribution/design you like

5.15

Debugging

R error messages are sometimes hard to follow, when the error

occurs in a low-level function. To see what happened after an

error, traceback() reports the entire call stack, which is useful

for seeing where things went wrong.

For example, in the permutation test example, suppose our
outcome variable were actually a data frame with one column
rather than a vector:

> wrong.extra <- as.data.frame(sleep$extra) # easy mistake!
> many.mean.diff <- replicate(10000,{
+ group.shuffle <- sample(sleep$group)
+ mean(wrong.extra[group.shuffle==2]) - mean(wrong.extra[group.shuffle==1])
+ })
Error in ‘[.data.frame‘(wrong.extra, group.shuffle == 2) :

undefined columns selected

We didn’t know we were calling ‘[.data.frame‘, so the message

appears opaque and unhelpful.

5.16

Debugging

> traceback()
8: stop("undefined columns selected")
7: ‘[.data.frame‘(wrong.extra, group.shuffle == 2)
6: wrong.extra[group.shuffle == 2]
5: mean(wrong.extra[group.shuffle == 2]) at #3
4: FUN(c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
3: lapply(X = X, FUN = FUN, ...)
2: sapply(integer(n), eval.parent(substitute(function(...) expr)),

simplify = simplify)
1: replicate(10000, {

group.shuffle <- sample(sleep$group)
mean(wrong.extra[group.shuffle == 2]) - mean(wrong.extra[group.shuffle == 1])

})

This mean the problem happens in our code

mean(wrong.extra[group.shuffle == 2]) and is a problem with

computing wrong.extra[group.shuffle == 2].

We want to have a look at wrong.extra and group.shuffle...

5.17

Debugging

The post-mortem debugger lets you look inside the code where
the error occurred;

> options(error=recover)
> many.mean.diff <- replicate(10000,{
+ group.shuffle <- sample(sleep$group)
+ mean(wrong.extra[group.shuffle==2]) - mean(wrong.extra[group.shuffle==1])
+ })
Error in ‘[.data.frame‘(wrong.extra, group.shuffle == 2) :

undefined columns selected

Enter a frame number, or 0 to exit

1: replicate(10000, {
group.shuffle <- sample(sleep$group)
mean(wrong.ex

2: sapply(integer(n), eval.parent(substitute(function(...) expr)), simplify =
3: lapply(X = X, FUN = FUN, ...)
4: FUN(c(0, 0,
5: #3: mean(wrong.extra[group.shuffle == 2])
6: wrong.extra[group.shuffle == 2]
7: ‘[.data.frame‘(wrong.extra, group.shuffle == 2)

We want 6, the last step of ‘our’ code

5.18

Debugging

Called from: eval(substitute(browser(skipCalls = skip), list(skip = 7 - which)),
envir = sys.frame(which))

Browse[1]> ls()
character(0)
Browse[1]> str(wrong.extra)
’data.frame’: 20 obs. of 1 variable:
$ sleep$extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...

Browse[1]> is.vector(wrong.extra)
[1] FALSE
Browse[1]> c

As well as data in unexpected formats, watch out for ‘weird’ data

that might lead to e.g. missing values in regression output.

Finally; turn the post-mortem debugger off with

options(error=NULL) # turn it off! turn it off!!!

5.19

Minimum p-value

Little point in permutation test for the mean: same result as

t-test

Permutation test is useful when we do not know how to compute

the distribution of a test statistic.

Suppose we test additive effects of 8 SNPs, one at a time, and

we want to know if the most significant association is real.

For any one SNP the z-statistic from a logistic regression model

has a Normal distribution.

We need to know the distribution of the most extreme of eight z-

statistics. This is not a standard distribution, but a permutation

test is still straightforward.

5.20

Minimum p-value

dat <- data.frame(y=rep(0:1,each=100),

SNP1=rbinom(200,size=2,prob=.1), SNP2=rbinom(200,size=2,prob=.2),

SNP3=rbinom(200,size=2,prob=.2), SNP4=rbinom(200,size=2,prob=.4),

SNP5=rbinom(200,size=2,prob=.1), SNP6=rbinom(200,size=2,prob=.2),

SNP7=rbinom(200,size=2, prob=.2), SNP8=rbinom(200,size=2,prob=.4))

> head(dat)

y SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8

1 0 0 0 0 0 0 1 0 0

2 0 0 1 0 1 0 1 0 2

3 0 0 1 0 1 1 0 0 0

4 0 0 0 1 1 0 0 0 0

5 0 0 1 0 1 1 0 0 0

6 0 0 0 0 1 0 1 0 1

5.21

Minimum p-value

oneZ<-function(outcome, snp){

model <- glm(outcome~snp, family=binomial)

coef(summary(model))["snp","z value"]

}

maxZ<-function(outcome, snps){

allZs <- sapply(snps,

function(this.snp){ oneZ(outcome, snp=this.snp) })

max(abs(allZs))

}

true.maxZ<-maxZ(outcome=dat$y, snps=dat[,-1])

manypermZ<-replicate(10000,

maxZ(outcome=sample(dat$y), snps=dat[,-1]))

5.22

Minimum p-value

5.23

Minimum p-value

The histogram shows the permutation distribution for the
maximum Z-statistic.

The blue curve is the theoretical distribution for one Z-statistic

The yellow curve is the theoretical distribution for the maximum
of eight independent Z-statistics.

Clearly the multiple testing is important: a Z of 2.5 gives p =
0.012 for a single test but p = 0.075 for the permutation test.

The theoretical distribution for the maximum has the right
range but the permutation distribution is quite discrete. The
discreteness is more serious with small sample size and rare SNPs.

[The theoretical distribution is not easy to compute except when
the tests are independent.]

5.24

More debugging

Permutation tests on other people’s code might reveal a lack of
robustness.

For example, a permutation might result in all controls being
homozygous for one of the SNPs and this might give an error
message

We can work around this with tryCatch()

oneZ<-function(outcome, snp){

tryCatch({model <- glm(outcome~snp, family=binomial())

coef(summary(model))["snp","z value"]},

error=function(e) NA

)

}

Now oneZ() will return NA if there is an error in the model fitting.

5.25

Caution: wrong null

Permutation tests cannot solve all problems: they are valid only

when the null hypothesis is ‘no association’

Suppose we are studying a set of SNPs that each have

some effect on outcome and we want to test for interactions

(epistasis).

Permuting the genotype data would break the links between

genotype and outcome and created shuffled data with no main

effects of SNPs.

Even if there are no interactions the shuffled data will look

different from the real data.

5.26

Caution: weak null hypothesis

A polymorphism could increase the variability of an outcome but
not change the mean.

In this case the strong null hypothesis is false, but the hypothesis
of equal means is still true.

• If we want to detect this difference the permutation test is
unsuitable because it has low power

• If we do not want to detect this difference the permutation
test is invalid, because it does not have the correct Type I
error rate.

When groups are the same size the Type I error rate is typically
close to the nominal level, otherwise it can be too high or too
low.

To illustrate this we need many replications of a permutation
test. We will do 1000 permutation tests for a mean, each with
1000 permutations.

5.27

meandiff<-function(x,trt){

mean(x[trt==1])-mean(x[trt==2])

}

meanpermtest<-function(x,trt,n=1000){

observed<-meandiff(x,trt)

perms<-replicate(n, meandiff(x, sample(trt)))

mean(abs(observed)>abs(perms))

}

trt1<-rep(c(1,2),c(10,90))

perm.p<-replicate(1000, {

x1<-rnorm(100, 0, s=trt1)

meanpermtest(x1,trt1)})

table(cut(perm.p,c(0,.05,.1,.5,.9,.95,1)))/1000

5.28

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

86 99 564 244 6 0

The p-values are too small, relative to a uniform distribution. If

we reverse the standard errors we get

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

27 28 275 354 67 249

If the two groups each have 50 observations we get

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

50 45 403 407 52 43

which is much better.

5.29

	Overview
	Simulation: easier than doing maths
	Permutation test
	How many permutations?
	Example: power calculation
	Debugging
	Minimum p-value
	More debugging
	Caution: wrong null
	Caution: weak null hypothesis
	

