

Interfacing R

Thomas Lumley Ken Rice

UW Biostatistics

Seattle, June 2008

Interfacing R

With Bioconductor, R can do a **huge** proportion of the analyses you'll want — but not everything

- Intensive (or anachronistic) C++, FORTRAN work, e.g. for pedigrees
- 'Speciality' analyses; some need different computing architecture
- Fancy interactive graphics

R can be used to 'manage' other software. Today we'll illustrate some favorite examples

Starting other software

NB these commands are for Windows only; see help files for e.g. Unix versions

- system is the equivalent of a DOS-style command
- system("notepad") starts the Notepad editor
- If the command takes arguments, put them in the same string;

```
system("notepad myfile.txt")
```

The shell command does much the same thing.

Starting other software

Some more options for system;

- wait; R 'hangs' until completion
- minimized; new program only appears in TaskBar
- show.output.on.console

Paths for files can be a little messy; system starts in your working directory (getwd). Outside of this, give the full pathway.

paste is useful, if you need to do a lot of this sort of thing. source may also help

Examples

Code for a really mundane job;

```
> setwd("C://MyData")
> for(i in 1:100){
    infile <- paste("gene",i,"data.txt", sep="")
    outfile <- paste("gene",i,"phase.out", sep="")
    system(paste("PHASE",infile,outfile))
}</pre>
```

... this will churn away for hours, although with no error-control.

Why did we use wait=TRUE here? (the default)

Examples

- WinBUGS implements Bayesian analyse; it's not super-fast but is very flexible
- It needs special (& clever) architecture to achieve this
- WinBUGS' input, output, graphics are all rather clunky
- R is better; so R2WinBUGS calls WinBUGS for the difficult bits, and does all the 'translation' itself
- This is done with (repeated) use of system()

Outline

Many programs already exist to do useful analyses. It is more convenient to call them from R than to rewrite them in R.

Sometimes this involves calling the C code directly, sometimes just involves using R to write input files for another program

Examples:

- Graphviz: drawing networks
- Ggobi: high-dimensional interactive graphics
- Google Earth: displaying outliers in context.

GraphViz (http://www.graphviz.org) is a free program for drawing networks, written by AT&T researchers.

Its input format looks like

```
"15" [shape= box,regular=1 ,height= 0.5 ,width= 0.75 ,style=filled,color= grey ];
"16" [shape= circle ,height= 0.5 ,width= 0.75 ,style=filled,color= grey ];
"2x3" [shape=diamond,style=filled,label="",height=.1,width=.1];
"2" -> "2x3" [dir=none,weight=1];
"3" -> "2x3" [dir=none,weight=1];
"2x3" -> "1" [dir=none,weight=2];
"2x3" -> "4" [dir=none,weight=2];
"2x3" -> "5" [dir=none,weight=2];
"2x3" -> "6" [dir=none,weight=2];
```

The sem package uses GraphViz to display path diagrams for structural equation models and the gap package uses it to draw pedigrees.

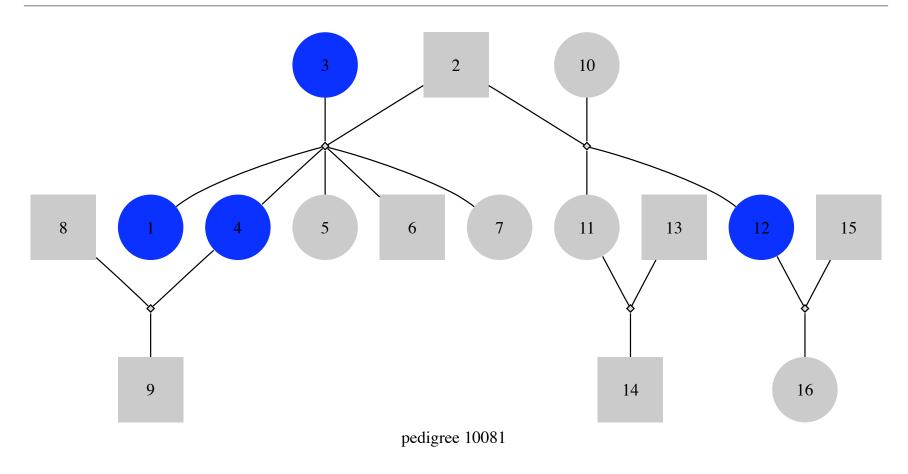
In gap the pedtodot() function writes a GraphViz input file from a pedigree in GAS or LINKAGE format.

	pid	id	fid	mid	sex	aff	GABRB1	D4S1645
1	10081	1	2	3	2	2	7/7	7/10
2	10081	2	0	0	1	1	-/-	-/-
3	10081	3	0	0	2	2	7/9	3/10
4	10081	4	2	3	2	2	7/9	3/7
5	10081	5	2	3	2	1	7/7	7/10
6	10081	6	2	3	1	1	7/7	7/10
7	10081	7	2	3	2	1	7/7	7/10
8	10081	8	0	0	1	1	-/-	-/-
9	10081	9	8	4	1	1	7/9	3/10
10	10081	10	0	0	2	1	-/-	-/-
11	10081	11	2	10	2	1	7/7	7/7
12	10081	12	2	10	2	2	6/7	7/7
13	10081	13	0	0	1	1	-/-	-/-
14	10081	14	13	11	1	1	7/8	7/8
15	10081	15	0	0	1	1	-/-	-/-
16	10081	16	15	12	2	1	6/6	7/7

First the code prints nodes for each individual, with sex and affectedness information

```
for (s in 1:n) cat(paste("\"", id.j[s], "\" [shape=",
    sep = ""), shape.j[s], ",height=", height, ",width=",
    width, ",style=filled,color=", shade.j[s], "];\n")
```

giving output like


```
"16" [shape= circle ,height= 0.5 ,width= 0.75 ,style=filled,color= grey ] ;
```

It then works out all the matings and creates small nodes for each mating and lines connecting the parents to these nodes

giving output like

```
"2x3" [shape=diamond,style=filled,label="",height=.1,width=.1] ;
"2" -> "2x3" [dir=none,weight=1] ;
"3" -> "2x3" [dir=none,weight=1] ;
```

and then connects children to parents.

[Bioconductor also has GraphViz more integrated with R in the RGraphViz package]

Dynamic graphics

Dynamic graphics are useful for high-dimensional data: only two dimensions fit on the screen at a time, but we can move between two-dimensional projections to see more structure.

Interactive highlighting of data helps interpret complicated plots.

R does not do either of these directly, but can link to software that does.

Ggobi

Ggobi (www.ggobi.org) is an open source visualization program for exploring high-dimensional data.

Using the rggobi package, it links to R. R can call Ggobi to display data and receive information back about the plots.

Example: population structure in the HapMap samples.

SVG+tooltips

SVG (Scalable Vector Graphics) is a non-bitmap graphics format for the web.

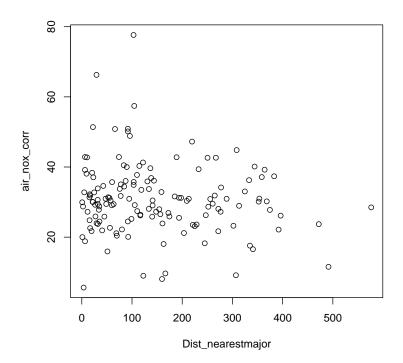
The RSvgDevice and RSVGTipsDevice packages allow R output to SVG format.

We can use this to create graphs with links and tooltips. For example, a funnelplot showing associations between a large number of SNPs and VTE.

Point at a dot to see the SNP it represents, and click to go to information about the gene.

SVG+tooltips

Google Earth


Google Earth is controlled by KML files specifying locations. KML is another plain text format.

We can write a KML file

and then send it to Google Earth with the shell.exec(filename) function, which opens a file using whatever is the appropriate program.

Google Earth

The identify() function lets the user select a point on a scatterplot.

In this example the points are locations where air pollution was measured, and we can call Google Earth to look at the location.