
Bioconductor: introduction

Ken Rice

Thomas Lumley

UW Biostatistics

Seattle, June 2008

What is Bioconductor?

What is Bioconductor?

• www.bioconductor.org

• Software project for analysis of genomic data – and related

tools, resources/datasets

• Open source and Open development

• Free

You could use commercial software; but experts typically write

R code first. The help manuals are not a sales pitch and

encourage appropriate use

Bioconductor basics

• Begun in 2001, based at Harvard and

now FHCRC (Seattle)

• A large collection of R packages (they

also convert good software to R)

• Far too much for our little course!

We’ll give examples of what Bioconductor can do, and how to

learn more. Gentleman et al (above) is a helpful reference text

Bioconductor basics

Getting started...

Bioconductor basics

> source("http://bioconductor.org/biocLite.R")

> biocLite()

installs the following libraries;

affy, affydata, affyPLM, annaffy, annotate, Biobase,

Biostrings, DynDoc, gcrma, genefilter, geneplotter, hgu95av2.db,

limma, marray, matchprobes, multtest, ROC, vsn, xtable,

affyQCReport

... then you use e.g. library(ROC) as before.

vignette(package="ROC") tells you to look at vignette("ROCnotes")

for a worked example – a very helpful introduction. (Or use

e.g. openVignette("ROC") from the Biobase package)

Bioconductor basics

To get other packages, use e.g. biocLite("SNPchip")

Do not need to type biocLite() after you install (even in a new

R session).

This would install everything again – which is harmless, but slow.

What to install?

Back to the front page – click ‘Packages’

What to install?

• Software – probably what you want

• Annotation data – e.g. probe sequence data for microarrays

of different types

• Experiment data – e.g. datasets from hapmap.org, some

expression datasets

Software example – hexbin

Genetics/Genomics tends to produce massive datasets. On any

(standard) plot of e.g. 10,000 points, many will overlap

Recall the California schools example – the California Academic

Performance Index reported from 6194 schools; download the

(standard) package

> install.packages("survey")

> library(survey)

> data(api)

> plot(api00~api99,data=apipop) # plain plot

Software example – hexbin

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●
●●

●
●●

●●

●

●●
●●
● ●●

●

●●
●●●

●

●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
● ●
●

●
●

●

●

●

●

●

●

●

●●
● ●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
● ●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●●

●
● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ●●

●

●

● ● ●

● ●

●●

●

●
●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●●
●

●

●
●

● ●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●
●●
●

●

●●
●

●●

●●●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●
●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●● ●●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●●
●
●
●

●
●

●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●●
●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●● ●

●

●

●●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●
●

●●

● ●
●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●●●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●
●●
●●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●

●
●●

●

●
●

●●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●
●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

● ●

●

●

●●●

●

●

●

●●●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

api99

ap
i0

0

Hexbin – a better way

We don’t really care about the exact location of every single

point.

• How many points in one ‘vicinity’ compared to others?

• Any ‘outliers’ far from all other data points?

In one dimension, histograms answer these questions by binning

the data

Hexbin – a better way

Binning in two dimensions;

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

Hexbin – a better way

Binning in two dimensions;

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

Hexbin – a better way

Binning in two dimensions;

● ●

●

●

● ●

●

Hexbin – a better way

Binning in two dimensions;

● ●

●

●

● ●

●

Hexbin – a better way

Back to schools

Now with hexbin; recall we download from Bioconductor, not

CRAN

> biocLite("hexbin")

> library(hexbin)

> with(apipop, plot(hexbin(api99,api00), style="centroids"))

Hexbin – a better way

1
7

12
18
23
29
34
40
46
51
57
62
68
73
79
84
90

Counts

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

GWAS analysis

Genome-Wide Association Studies (GWAS) are currently popular

– typically, these genotype e.g. 1M SNPs on several thousand

subjects in (large) established studies

• Usually on 1000’s of subjects

• ‘Simple’ t-tests, regresions, for each SNP (like microarrays)

• 1M anything takes a long time! (2-72 hours)

• Just loading big datasets is non-trivial – but some tools are

available

GWAS analysis

snpMatrix is a Bioconductor package for GWAS analysis –

maintained by David Clayton (analysis lead on Wellcome Trust)

biocLite("snpMatrix")

data(for.exercise)

A ‘little’ case-control dataset (Chr 10) based on HapMap – three

objects; snp.support, subject.support and snps.10

GWAS analysis

> summary(snp.support)
chromosome position A1 A2

Min. :10 Min. : 101955 A:14019 C: 2349
1st Qu.:10 1st Qu.: 28981867 C:12166 G:12254
Median :10 Median : 67409719 G: 2316 T:13898
Mean :10 Mean : 66874497
3rd Qu.:10 3rd Qu.:101966491
Max. :10 Max. :135323432

> summary(subject.support)
cc stratum

Min. :0.0 CEU :494
1st Qu.:0.0 JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max. :1.0

> show(snps.10)
A snp.matrix with 1000 rows and 28501 columns
Row names: jpt.869 ... ceu.464
Col names: rs7909677 ... rs12218790

GWAS analysis

• 28501 SNPs, all with Allele 1, Allele 2

• 1000 subjects, 500 controls (cc=0) and 500 cases (cc=1)

• Far too much data for a regular summary() of snps.10 – even

in this small example

GWAS analysis

Basic data cleaning checks...

> snpsum <- summary(snps.10)
> summary(snpsum)

Calls Call.rate MAF P.AA
Min. : 975 Min. :0.975 Min. :0.0000 Min. :0.00000
1st Qu.: 988 1st Qu.:0.988 1st Qu.:0.1258 1st Qu.:0.06559
Median : 990 Median :0.990 Median :0.2315 Median :0.26876
Mean : 990 Mean :0.990 Mean :0.2424 Mean :0.34617
3rd Qu.: 992 3rd Qu.:0.992 3rd Qu.:0.3576 3rd Qu.:0.60588
Max. :1000 Max. :1.000 Max. :0.5000 Max. :1.00000

P.AB P.BB z.HWE
Min. :0.0000 Min. :0.00000 Min. :-21.9725
1st Qu.:0.2080 1st Qu.:0.06465 1st Qu.: -2.8499
Median :0.3198 Median :0.27492 Median : -1.1910
Mean :0.3074 Mean :0.34647 Mean : -1.8610
3rd Qu.:0.4219 3rd Qu.:0.60362 3rd Qu.: -0.1014
Max. :0.5504 Max. :1.00000 Max. : 3.7085

NA’s : 4.0000

GWAS analysis

Implementing single-SNP tests for each SNP, and reporting only

those (use) which pass (loose) quality-control checks

tests <- single.snp.tests(cc, data = subject.support,

+ snp.data = snps.10)

tests$position <- snp.support$position

use <- with(snpsum, MAF > 0.01 & z.HWE^2 < 200)

Usually give tables of ‘top hits,’ but...

GWAS analysis

with(tests[use,], plot(hexbin(position, chi2.1df, xbin = 50)))

0 2e+07 6e+07 1e+08

0

5

10

15

20

25

30

35

position

ch
i2

.1
df

1
21
40
60
80
99

119
138
158
178
197
217
236
256
276
295
315

Counts

GWAS analysis

with(tests[use,], qq.chisq(chi2.1df, df = 1))

0 5 10 15

0
5

10
15

20
25

30
35

QQ plot, unadjusted for ancestry

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●

●●●
●●●

●●●
●●

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●

●
● ● ●

●

GWAS analysis

tests <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = snps.10)

0 5 10 15

0
5

10
15

20
25

30

QQ plot, adjusted for ancestry

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●

● ●
●

●
●

●

Signficance Analysis of Microarrays

(SAM)

SAM is a popular new method (Tusher et al 2001) which

identifies differentially expressed genes

ge
ne

 1
ge

ne
 2

ge
ne

 3
ge

ne
 4

ge
ne

 5
: :

ge
ne

 2
9,

99
6

ge
ne

 2
9,

99
7

ge
ne

 2
9,

99
8

ge
ne

 2
9,

99
9

ge
ne

 3
0,

00
0

Cases
(have disease)

case 1
case 2

:

control 1
control 2

:
Controls

(disease-free)

i.e. large red/green difference between cases and controls

Signficance Analysis of Microarrays

(SAM)

Why so popular? Here’s the traditional method;

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

2s

2s

2s

2s

ycontrol

ycase

controls cases

E
xp

re
ss

io
n

significant when d ≡
ycase − ycontrol

s
> ∆

Do this ×30,000 genes; d in each is quite unstable. Small values

of s give large d, which may give false positive results

Signficance Analysis of Microarrays

(SAM)

SAM has a quick fix for this problem;

Traditional SAM

di =
ȳi,case − ȳi,control

si
di =

ȳi,case − ȳi,control

si + s0

For each gene (each i), SAM’s s0 borrows strength from the

other genes.

SAM (and siggenes) then does some clever permutation testing

to produce False Discovery Rates

Signficance Analysis of Microarrays

(SAM)

Golub et al (1999) give differential expression for 3,051 genes,

in 27 ‘controls’ (ALL) and 11 ‘cases’ (AML)

> library(multtest)

> data(golub)

> table(golub.cl)

0 1

27 11

Now let’s do the SAM analysis; we give a random seed for the

permutations – and tell R how many to do;

> sam.out <- sam(golub, golub.cl, B=100, rand = 123)

... takes only a few seconds. Use B=1000 or more if you can

Signficance Analysis of Microarrays

(SAM)

> summary(sam.out)
s0 = 0.0584 (The 0 % quantile of the s values.)
Number of permutations: 1000

Delta p0 False Called FDR cutlow cutup j2 j1
1 0.1 0.499 2420.329 2742 0.440123 -0.160 0.244 1446 1756
2 0.7 0.499 264.208 1257 0.104804 -1.247 1.438 746 2541
3 1.3 0.499 13.526 521 0.012945 -2.270 2.488 325 2856
4 1.8 0.499 0.903 215 0.002094 -3.119 3.311 139 2976
5 2.4 0.499 0.043 76 0.000282 -4.157 4.259 44 3020
6 3.0 0.499 0.003 15 9.97e-05 -5.577 5.139 4 3041
7 3.6 0.499 0 5 0 -Inf 5.971 0 3047
8 4.2 0.499 0 2 0 -Inf 7.965 0 3050
9 4.7 0.499 0 2 0 -Inf 7.965 0 3050
10 5.3 0.499 0 2 0 -Inf 7.965 0 3050

p0 is the prior probability of differential expression. Also note

that the FDR values are rounded

Signficance Analysis of Microarrays

(SAM)

> plot(sam.out)

●

●

● ● ● ● ● ● ● ●

0 1 2 3 4 5

0
10

20
30

40

Delta vs. FDR

∆

F
D

R
 (

in
 %

)

●

●

●

●
● ● ● ● ● ●

0 1 2 3 4 5

0
50

0
15

00
25

00

Delta vs. Significant Genes

∆

N
um

be
r

of
 S

ig
ni

fic
an

t G
en

es

Signficance Analysis of Microarrays

(SAM)

> plot(sam.out, 3) #specifies Delta

Microarray analysis with limma

The limma package can do several analyses for microarrays. It

reads in raw data, in standard formats

> library(limma)

> my.files <- dir(pattern=".spot")

> my.files

[1] "swirl.1.spot" "swirl.2.spot" "swirl.3.spot" "swirl.4.spot"

> RG <- read.maimages(my.files, source="spot")

Read swirl.1.spot

Read swirl.2.spot

Read swirl.3.spot

Read swirl.4.spot

Microarray analysis with limma

What is swirl? A mutation affecting zebrafish

We have 2 mutants, and 2 wild-type fish

Microarray analysis with limma

What is swirl? A mutation affecting zebrafish

We have 2 mutants, and 2 wild-type fish

Microarray analysis with limma

Here are the red intensities from each microarray;

– need to normalize each array (or get a bigger sample!)

Microarray analysis with limma

limma has ‘default’ normalization techniques

> MA1 <- normalizeWithinArrays(RG)

> MA2 <- normalizeBetweenArrays(MA1)

Can you guess where the ‘signals’ are?

Microarray analysis with limma

limma fits ‘plain’ models to each gene, and also ‘robustifies’ them

with an Empirical Bayes approach (much the same as SAM)

> fit1 <- lmFit(MA2, design=c(-1,1,-1,1))
> options(digits=3); toptable(fit, n=30, adjust="fdr")

M t P.Value adj.P.Val B
2961 -2.66 -20.8 1.44e-07 0.00121 7.55
3723 -2.19 -17.6 4.59e-07 0.00194 6.75
1611 -2.19 -16.1 8.44e-07 0.00238 6.29
7649 -1.60 -14.2 2.02e-06 0.00326 5.58
515 1.26 13.7 2.55e-06 0.00326 5.39

> fit2 <- eBayes(fit1)
> options(digits=3); topTable(fit2, n=30, adjust="fdr")

Block Row Column ID Name M A t P.Value adj.P.Val B
2961 6 14 9 fb85d05 18-F10 -2.66 10.33 -20.8 1.44e-07 0.00121 7.55
3723 8 2 3 control Dlx3 -2.19 13.24 -17.6 4.59e-07 0.00194 6.75
1611 4 2 3 control Dlx3 -2.19 13.45 -16.1 8.44e-07 0.00238 6.29
7649 15 11 17 fb58g10 11-L19 -1.60 13.49 -14.2 2.02e-06 0.00326 5.58
515 1 22 11 fc22a09 27-E17 1.26 13.19 13.7 2.55e-06 0.00326 5.39

	What is Bioconductor?
	Bioconductor basics
	What to install?
	Software example -- hexbin
	Hexbin -- a better way
	GWAS analysis
	Signficance Analysis of Microarrays (SAM)
	Microarray analysis with limma

